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Accurate description of the solvent environment is critical in computer simulations of protein

structure and dynamics. An implicit treatment of solvent aims to capture the mean influence of

water molecules on the solute via direct estimation of the solvation free energy. It has emerged as

a powerful alternative to explicit solvent, and provides a favorable compromise between

computational cost and level of detail. We review the current theory and techniques for implicit

modeling of nonpolar solvation in the context of simulating protein folding and conformational

transitions, and discuss the main directions for further development. It is demonstrated that the

current surface area based nonpolar models have severe limitations, including insufficient

description of the conformational dependence of solvation, over-estimation of the strength of

pair-wise nonpolar interactions, and incorrect prediction of anti-cooperativity for three-body

hydrophobic associations. We argue that, to improve beyond current level of accuracy of implicit

solvent models, two important aspects of nonpolar solvation need to be incorporated, namely, the

length-scale dependence of hydrophobic association and solvent screening of solute–solute

dispersion interactions. We recognize that substantial challenges exist in constructing a sufficiently

balanced, yet reasonably efficient, implicit solvent protein force field. Nonetheless, most of the

fundamental problems are understood, and exciting progress has been made over the last few

years. We believe that continual work along the frontiers outlined will greatly improve one’s

ability to study protein folding and large conformational transitions at atomistic detail.

1. Introduction

Recent years have witnessed remarkable progress in computa-

tional methodologies for modeling and prediction of protein

structures and dynamics.1–3 Central to these developments are

the energy functions that describe the basic building blocks of

the molecule and their interactions and simulation techniques.

Such energy functions include knowledge-based ones that

largely rely on statistics derived from known structures and

sequence analysis.4–6 These energy functions are often com-

plemented by physics motivated terms, and have proven to be

quite powerful in the challenging exercise of protein structure

prediction.2,7,8 For rigorous simulation of biomolecules (to

explore the dynamics and understand biological function), the

workhorse is the general purpose molecular mechanics force

fields.9,10 These empirical force fields are based on basic

physical principles (i.e., physics-based), and the associated
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parameters are derived from a combination of experimental

measurements, quantum mechanics calculations and empirical

corrections. The accuracy of physics-based force fields has

been consistently improved over the years.10 Nevertheless,

various limitations persist, especially when it comes to explor-

ing large conformational transitions of proteins.1,3,10,11 Many

of these limitations are intimately related to the need for an

accurate and efficient description of solvent that plays critical

roles in the structure, dynamics and function of biomole-

cules.12 Explicit inclusion of water molecules provides the

most detailed description of solvent, but, at the same time,

dramatically increases the system size and the associated

computational cost. Furthermore, longer simulations are

necessary to obtain statistically meaningful averages for pro-

tein structure, dynamics and thermodynamic properties. One

should also remember that a higher level of detail does not

automatically translate into higher level of accuracy, particu-

larly in terms of describing protein conformational equilibria.

For example, while it is recognized that there are systematic

biases in the secondary structure preference in modern protein

force fields with explicit solvent models,9,13–15 progress

towards general and transferable corrections has been very

limited. This can be partially attributed to the expensive

computational cost of explicit solvent simulations, besides

the highly complex nature and large parameter space of the

related optimization problem.

Implicit solvent models have emerged as a powerful alter-

native to explicit water for representing the solvent environ-

ment, where the mean influence of solvent molecules on the

solute is captured via a direct estimation of the solvation free

energy, the reversible work required to transfer the solute in a

fixed configuration from vacuum to solution.16,17 The total

solvation free energy is often decomposed into nonpolar and

electrostatic contributions, which correspond to the reversible

work required to: first, insert the solute in the solvent with zero

atomic partial charges; and second, switch the partial charges

from zero to their full values.17 Such a decomposition allows

both components to be related to appropriate continuum

descriptions of water, and is generally more accurate than

fully empirical approaches where the total solvation energetics

is estimated directly from either exposed surface area or

solvent-excluded volume.18–20 Continuum electrostatics is the

most well-established model for electrostatic solvation, and

the most popular nonpolar solvation model is based on

solvent-accessible surface area (SA). In particular, the general-

ized Born (GB) approximation, complemented by an auxiliary

SA-based nonpolar term, offers an excellent balance between

efficiency and accuracy.21 With continual enhancement and

improvement over the last few years, the GB/SA approxima-

tion is now recognized as a prime choice for implicit treatment

of solvent for biomolecular simulation.9,16 Various implemen-

tations are now available in all major molecular modeling

software packages, and have found applications in a wide

range of biochemical and biophysical problems.16

Elimination of the solvent molecules by the implicit treat-

ment substantially reduces the number of atoms needed to be

simulated. More importantly, this can be achieved with only a

moderate increase in the computational cost required for

estimating the solvation free energy on-the-fly. Clearly, such

a dramatic reduction in the system size does not come without

a loss of detail and achievable accuracy. For example, implicit

solvent models may yield considerable disagreement with

explicit water simulations in short-range effects when the

detailed interplay of a few water molecules (which are distinct

from the bulk water) is important.22,23 Examination of the

potentials of mean force (PMFs) between model compounds

also revealed a lack of fine structure in the implicit solvent

PMFs due to continuum descriptions.24,25 Nonetheless, the

substantial reduction in the computational cost and extension

of accessible simulation timescales with implicit treatment of

solvent have opened a door to address many biological

problems that are otherwise difficult with explicit solvent.14,16

Particularly, it has also allowed development of new modeling

techniques, such as constant pH simulations to study

pH-dependent protein folding and unfolding.26,27

Another important, but easily overlooked, benefit of im-

plicit solvent is that a reduction in the computational cost also

facilitates careful re-parameterization of the force field, for

example, to suppress systematic biases such as the above

mentioned secondary structure preferences. The conforma-

tional equilibria of proteins is governed by delicate balance

among sets of underlying competing interactions, i.e., the

solvation preference of side chains and backbones in solution

versus the strength of solvent-mediated interactions between

these moieties in a complex protein environment.14,25 The

extent to which a solvent model (explicit or implicit) can

capture this delicate balance is a key to its success in describing

conformational equilibria. Achieving sufficient balance of the

competing interactions for complex heterogeneous systems is a

challenging task. To a large extent, this is due to a severe lack

of direct experimental measurements or reliable high-level

quantum mechanics data. In practice, one has to resort to

indirect experimental observables, such as thermodynamic

stability and conformation equilibria of model peptides and

proteins, in order to rebalance the force field.10,14,15,25 How-

ever, reliable calculation of these thermodynamic quantities

requires extensive folding and unfolding simulations, and is

generally only accessible with implicit solvent. For example, it

was recently demonstrated that a more consistent GB/SA

force field could be achieved by carefully balancing solvation

and intramolecular interaction, guided by PMFs between

amino acid polar groups, and by conformational equilibria

of model peptides.25,28 The optimized force field was subse-

quently verified by folding of additional peptides and mini-

proteins that were not used in the optimization process,25,26

indicating much improved robustness and transferability.

Similar efforts have also been reported for other GB/SA

models.15,29 Note that reliable calculation of peptide confor-

mational equilibria remains a challenging and expensive task

even with implicit solvent, and that advance sampling techni-

ques such as the replica exchange (REX) method30,31 are

indispensable in these developments.

Despite methodological advances and force field parameter-

ization improvements, applications of various physics-based

implicit solvent force fields to ab initio folding simulation (i.e.,

without any additional knowledge besides the force field and

sequence) of larger and more complex proteins (those with

three or more secondary structure elements and non-trivial
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tertiary folds) have demonstrated only limited success.1,3,11,32

While individual successful folding simulations have been

reported for a few mini-proteins and small natural pro-

teins,33–38 they appear to rely heavily on serendipitous cancel-

lation of errors for the given combination of force field choice

and protein sequence, and consistency in a force field’s ability

to fold a range of proteins with different topologies has yet to

be demonstrated. Many factors might contribute to this,

including limitations of the underlying protein force fields

(e.g., atomic charges and other nonbonded parameters) and

insufficient sampling capability. It should also be emphasized

that direct simulation of protein folding is one of the most

challenging and stringent tests of the force field (and the

sampling method). From the implicit solvent perspective, there

exist additional intrinsic limitations due to the continuum

approximations. Nevertheless, we believe that the full poten-

tial of implicit solvent force fields has yet to be reached, and

there is plenty of room for further improvement. Specifically,

many of the recent developments have been focused on

electrostatic solvation, through both methodological improve-

ments16,39 and optimization of key (physical) para-

meters.15,25,40,41 As a result, the electrostatic solvation free

energy is now the most reliable and accurate aspect in most

GB related implicit solvent models. In contrast, the nonpolar

solvation free energy has been either largely ignored or

described by simplistic SA models.16,39 Indeed, nonpolar

solvation is more complex in nature, and the associated

energetics is generally of smaller magnitude than the polar

counterpart. Nonetheless, it is well appreciated that hydro-

phobic association is one of the two principal interactions

(besides hydrogen bonding) that determines biomolecular

structures and assemblies.42 The delicate balance between

intramolecular dispersion interactions and nonpolar solvation

is essential for the accurate description of protein conforma-

tional equilibria. Therefore, if one wishes to improve beyond

the current level of accuracy in the implicit solvent force field

such that it might be consistently applied to simulate protein

folding and conformational transitions, further improvement

in the treatment of nonpolar solvation is essential.

The main focus of this article is to investigate various

drawbacks of popular SA models for treating nonpolar solva-

tion, mainly in the context of modeling protein folding and

conformational transitions. By examining interactions be-

tween model compounds in explicit and implicit solvent, and

by simulating folding and unfolding of small peptides, we

identify important physics that ought to be incorporated for

more accurate and realistic modeling of nonpolar solvation.

We conclude with a discussion of several promising solutions

as well as remaining challenges in such an endeavor.

2. Surface area based nonpolar solvation models

2.1 First solvation shell approximation

The underlying statistical thermodynamics basis of implicit

solvent and the formal decomposition of the total solvation

free energy into nonpolar and electrostatic contributions have

been described in detail previously.17 Nonpolar solvation is

mainly associated with short-range repulsive interactions (to

create the solvent cavity where the solute resides) and so-

lute–solvent dispersion interactions. Both interactions are

dominated by the first solvation shell. Additional first-solva-

tion-shell effects include entropic contributions due to changes

in water structures near the solute.43 The energetics associated

with these effects should, in a first-order approximation, be

proportional to the average number of water molecules in the

first solvation shell. This is the physical basis of SA-based

nonpolar solvation models, where the nonpolar solvation free

energy, DGnp, is estimated as

DGnp ¼
X
i

giAi; ð1Þ

with atomic effective surface tension coefficients, gi, and atom-

ic solvent-accessible surface areas, Ai. In most GB/SA models,

further simplification is made by assuming a universal g value
for all atom types, and eqn (1) is reduced to DGnp = gA, where
A is the total solvent-accessible surface area. Validity of the

linear approximation of eqn (1) has been supported by exam-

ining the experimental solvation free energies of linear alkanes

and other neutral organic compounds as a function of surface

area,18,44–46 as well as theoretical and computational studies

on nonpolar solvation and hydrophobic interactions.47–50

Continuum descriptions of solvent break down at short

range, due to a wide range of effects including nonlinear

response of solvent to the local electric field near the solute

and charge transfer to or from the solvent.43 These ‘‘second-

ary’’ effects are also dominated by the first solvation shell. The

associated energetics should also largely scale with the solute

surface area, and can be in principle included in carefully

parameterized SA terms. As such, the SA term often reflects

more than just nonpolar solvation, and the parameter g is

largely empirical in nature, determined mainly based on the

total solvation free energy of (neutral) model compounds.

Depending on a range of factors including the underlying

(solute) force field, accompanying electrostatic solvation

model, and choice of the solute–solvent boundary (see below),

the value of g varies substantially, ranging from as low as 5–7

cal mol�1 Å�2 21,45,51 to 40–70 cal mol�1 Å�2.52,53 Inconsis-

tency in g to some extent reflects the crudeness of SA models.

For protein simulations, small g has been empirically found to

be optimal, with the most commonly used value being 5 cal

mol�1 Å�2.25,54,55 With such a small g, the SA term has

minimal impact on distinguishing compact misfolded confor-

mations from native-like folds. As it will be discussed in detail

in the following sections, small g (improperly) compensates for

some of the artifacts of SA models.32

2.2 Solute–solvent boundary

The precise location of the solute–solvent boundary is a key

physical property that governs both nonpolar and electrostatic

solvation free energies. In principle, the solvent-accessible

surface, defined as a continuous surface traced out by the

center of a ball rolling over the solute,56 is the most appro-

priate choice. Alternatively, van der Waals (vdW)-like and

molecular surfaces are also commonly used.57 As discussed

above, the continuum approximations break down at short

range, and the SA term contains empirical corrections to

compensate for various first-solvation-shell effects and to
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cancel errors in other force field terms. Therefore, the optimal

choice of solute–solvent boundary in practice is no longer

obvious. Furthermore, the optimal solute–solvent boundary

for nonpolar solvation does not necessarily coincide with that

for electrostatic solvation, even though the same boundary is

used in all current GB/SA models. For a given surface defini-

tion, the exact location of the boundary is determined by the

intrinsic atomic radii used to construct the surface (referred to

as input radii hereafter). Input radii are key physical para-

meters in optimization of both electrostatic and nonpolar

solvation. Many of the previously observed artifacts of con-

tinuum electrostatics models, such as over-stabilized salt-

bridge formation, can be effectively suppressed through care-

ful parameterization of input radii.25,29 Similar optimization is

expected to be necessary for improving the accuracy of the

nonpolar solvation free energy. An important limitation,

however, is that these optimized parameters are tightly

coupled with the specific combination of protein force field

and implicit solvent model, and are generally not transferable.

2.3 SA models systematically over-stabilize pair-wise nonpolar

interactions

The linear approximation of eqn (1) is simple, can be imple-

mented efficiently, and works reasonably well with careful

parameterization. Such simplification also leads to certain

caveats, many of which have been well recognized and exten-

sively discussed in the literature, particularly concerning the

difficulty in handling cyclic alkanes,45 the limited ability to

account for conformational dependence of hydration free

energy,49,58 and inconsistency in g values.53 These limitations

have been mainly attributed to either an insufficient descrip-

tion of solvent screening of (medium-range) intramolecular

dispersion interactions58–60 or the dependence of g on surface

curvature and molecular shape.45,53,61 For small molecules,

reliable experimental data exist for the solvation free energy,

and most of the potential limitations might be overcome with

extensive parameterization and conservative application with-

in the valid regimes.43 The problem is much more complex for

biomolecules because of the necessity to handle heterogeneous

environments, complex molecular shapes, and different mole-

cular length scales. The exact consequences of the above

limitations have not been fully appreciated in terms of model-

ing peptide and protein conformational equilibria. While it is

clear that critical limitations exist, as reflected in a lack of

consistency in ab initio protein folding simulations discussed

above, many factors contribute simultaneously and in highly

convoluted ways, rendering it extremely difficult to pinpoint

the exact origins of the problems.

Parameterization of a complex protein force field is a

severely under-determined problem,9,10 and the ability to

reproduce the experimental solvation free energy of a few

dozen of model compounds is often insufficient to enforce

accurate balance of competing interactions that are critical for

modeling conformational equilibria. Therefore, it is useful to

directly examine the ability of an implicit solvent model to

reproduce the strength of interactions between representative

nonpolar side chain groups in arguably more accurate explicit

solvent. Similar approaches prove to be effective for optimiz-

ing the electrostatic component.24,25 In Fig. 1, we compare the

strengths of interaction between several neutral amino acid

side chains, including Phe, Ile, Pro, Tyr and Trp, in represen-

tative fixed configurations in three solvent models. The stabi-

lity shown is simply defined as the free energy at the contact

minimum with respect to that at large separation. The solute

was described by the CHARMM22 all-atom force field.62 The

PMFs in TIP3P63 explicit water were computed using the same

free energy perturbation protocol described previously.32 The

convergence is on the order of 0.1 kcal mol�1, estimated by

comparing the stabilities using only the first and second half of

sampling. PMFs in implicit solvent were computed by simply

translating the solutes along the reaction coordinates. GBSW/

SA25,28 and GBMV/SA64 are two of the latest GB models that

have been shown to be particularly accurate.57 GBSW

employs a vdW-based surface with a smooth dielectric bound-

ary, while a molecular surface is used in GBMV. In both GB

Fig. 1 Stabilities of pair-wise interactions between nonpolar amino acid side chain analogues in implicit and explicit solvents. The notations are:

f (Phe), l (Leu), w (Trp), p (Pro), y (Tyr), p (parallel), pd (parallel displaced), ap (anti-parallel), apd (anti-parallel displaced), etf (edge-to-face). The

same set of input radii25 was used for both GBSW/SA and GBMV/SA. RMS deviations from the TIP3P results are 1.88, 0.68, 0.64 kcal mol�1 for

vacuum, GBSW/SA and GBMV/SA, respectively; and the corresponding mean deviations are +1.55, +0.54, +0.53 kcal mol�1, respectively.
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models, Born radii are calculated by a rapid volume integra-

tion scheme that includes a higher-order correction term to the

Coulomb field approximation.64 Default GBSW/SA and

GBMV/SA parameters were used, with the same set of input

radii.25 The nonpolar solvation energy was estimated with g=
5.0 cal mol�1 Å�2. The dimer stabilities in vacuum are also

included, to illustrate the influence of solvent on the dimer

stabilities. The results clearly show that both GBSW/SA and

GBMV/SA systematically over-stabilize the dimer interactions

in comparison to the TIP3P explicit water, with an average

over-stabilization of 0.54 and 0.53 kcal mol�1, respectively.

The stabilities of particular pairs might be strongly influenced

by the choice of vdW-like or molecular surfaces. When all

pairs are considered, the difference is small and there is little

indication of which surface is superior. Note that interactions

with aromatic side chains, particularly with Trp, include

substantial electrostatic contributions. While it is not obvious

that the systematic over-stabilization can be largely attributed

to limitations in the SA term, it will be illustrated further in the

next section that there are several physical considerations that

strongly link the over-stabilization to certain drawbacks of SA

models. These results also provide a rationale for why small g
values have been empirically found to be optimal for protein

modeling:25,54,55 small g alleviates the systematic over-stabili-

zation. It is possible to improve the agreement with the TIP3P

results by using atom or functional group specific g values.

However, such improvement is often not transferable to more

complex interactions, such as those involving three or more

nonpolar groups.32

In Fig. 2, we further examine the ability of the TIP3P,

GBSW/SA and GBMV/SA solvent models to reproduce the

experimental solvation free energy of all neutral amino acid

side chain analogues except Ala. The root-mean-square

(RMS) deviations from the experimental values are 1.41,

1.11 and 1.01 kcal mol�1 for TIP3P, GBSW/SA and

GBMV/SA, respectively. The apparent better performance

of implicit solvent is likely a result of more direct parameter-

ization (e.g., of the input atomic radii). Two important

observations are made. Firstly, the TIP3P water model system-

atically under-solvates all the nonpolar side chains. This

implies that interactions between these nonpolar side chains

in TIP3P is systematically overestimated. Therefore, systema-

tic over-estimation of dimer stabilities in implicit solvent (in

comparison to the actual values) is likely even more severe

than what the comparison with TIP3P results suggests. Sec-

ondly, the aromatic side chains (Trp, Phe and Tyr) are

particularly problematic in current protein force fields (which

is not limited to CHARMM22).65 This is related to the

difficulty of atom-centered fixed charge models in representing

the out of plane p-electron densities.66,67 Considering the

importance of aromatic side chains in protein structure, this

poses additional challenges in constructing a balanced

(implicit solvent) force field.

2.4 Folding simulations of model peptides and proteins

Systematic over-stabilization of nonpolar interactions has

important implications in simulation of protein folding and

conformational transitions. It increases the roughness of the

underlying potential energy surface and hinders rapid

sampling of the conformational space. This is likely why

spontaneous reversible folding and unfolding of weakly stable

b-hairpins have proven difficult to simulate, even though

reasonable agreement with experiments on important folding

thermodynamics has been demonstrated for a range of

peptides.25 In particular, strong interactions between

nonpolar residues and between large nonpolar side chains

(e.g., Phe and Trp) and the rest of the peptide chain

(e.g., backbone) render it difficult for the protein to escape

from compact (misfolded or folded) conformational states.

More importantly, the over-estimation of nonpolar interac-

tions disrupts the delicate balance of underlying competing

interactions and can shift the global energy minimum away

from the true native basin.

For illustration, Fig. 3 summarizes the results of extensive

ab initio folding simulations of two small helical proteins,

including villin headpiece subdomain (residues 41–76;

PDB ID: 1vii) (HP36),68 and a 46-residue segment of

Fig. 2 Experimental and calculated total solvation energies of amino acid side chain analogues. The experimental and TIP3P results were taken

from Shirts and Pande.65 The implicit solvent results were computed using the same parameters as in Fig. 1, and all model compounds have the

default geometries defined in the CHARMM22 fore field.62 The RMS deviations from the experimental results are 1.41, 1.11 and 1.01 kcal mol�1

for TIP3P, GBSW/SA and GBMV/SA, respectively.
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staphylococcal protein A fragment B (residues 10–55; PDB

ID: 1bdc).69 The CHARMM22/CMAP force field62,70,71 with

an optimized GBSW/SA solvent25 was used. The REX mole-

cular dynamics (MD) simulations were carried using the

MMTSB Tool Set31,72 to enhance the conformational sam-

pling. 24 replicas spanning 270 to 600 K were used. Exchange

of simulation temperatures was attempted every 2.0 ps.

The simulations were initiated from fully extended conforma-

tions, and the total simulation lengths were 160 ns for villin

headpiece (80 000 REX cycles) and 100 ns for protein A

(50 000 REX cycles). For both proteins, near-native

conformations, shown in Fig. 3b and c, were reached

within the first 40 ns of REX-MD simulations, but

little further progress toward the fully folded structures

was made for the rest of the simulations. The near-native

conformations are within 4 Å CA RMSD from the

experimental structures. The secondary elements are largely

correct, with helical content of about 60% of that for

the native structures. The arrangements of helices are

essentially native-like, but the packing is not as compact as

in native states. The critical bottleneck to the fully

folded conformations appears to be formation of the hydro-

phobic cores, highlighted in green color in Fig. 3b and c.

For example, HP36 contains a mini hydrophobic core that

consists of three phenylalanines, which is not formed in the

simulated structure even at the end of the 160 ns REX-MD

simulation. It is interesting that folding of secondary

structures and formation of tertiary hydrophobic cores are

clearly coupled, which is expected as both proteins are known

to fold cooperatively.

The failure to reach fully folded states might be attributed to

two reasons. First, the compact, near-native conformations

are too stable in the current force field. To reach the

true native fold requires searching through a large number

of such compact conformations by breaking and reforming

many (nonpolar) contacts. With systematic over-stabilization

of nonpolar interactions, this becomes very slow and

cannot be accomplished within the timescales simulated

(even though these simulations are two of the longest

REX-MD simulations reported up to date). Second,

the underlying free energy surface is significantly distorted

and the true native structure no longer corresponds to

the global free energy minimum. To examine whether the

native structure has lower potential energy, a 20 ns control

REX-MD simulation was initiated from the PDB structure

of HP36. The results were summarized in Fig. 3a. It shows

that the fully folded conformations (i.e., those with

CA RMSD of about 2 Å) have lower energies on average.

It indicates that the true global free energy minimum for

HP36 might not have been severely distorted. Similar control

simulations show that the native structures no longer have

lower potential energies on average compared to other

compact structures. Therefore, both reasons are responsible

for the observed inability to fully fold HP36 and protein A.

The fact that near-native conformations are reached in both

cases is encouraging. It indicates that the force field has nearly

proper balance of the underlying interactions, particularly

with respect to electrostatic solvation and intramolecular

interactions, and that a fine tuning of the nonpolar solvation

model might be sufficient to fully fold both proteins. Recently,

Duan and coworkers reported successful folding simulations

of 35-resiude villin headpiece subdomain (HP35) using

AMBER FF03 force field with a GB/SA model, reaching fully

folded conformations with CA RMSD as low as 0.39 Å.38,73

Again, there is little indication that this is a general case, and

the success clearly hinges on the particular choice of force field

(for a given sequence) as well as additional parameters such as

cutoffs and g.

Fig. 3 (a) Total potential energy vs. CA RMSD plot from REX-MD folding (black dots) and control (red dots) simulations of villin headpiece

subdomain (HP36). The folding simulation was initiated from a fully extended conformation, and the control simulation from the PDB structure.

Snapshots were taken every 10 REX exchange steps at 270 K. The total simulation lengths were 160 and 20 ns for folding and control runs,

respectively. (b) and (c) Representative near-native conformations from folding simulations in comparison with the experimental structures, (b)

HP36, (c) protein A. The length of protein A REX-MD folding simulation is 100 ns. Representative conformations from the largest cluster at the

lowest temperature (270 K) are shown, and their occupancies are 25 and 24%, respectively, during the last 20 ns of the REX-MD simulations. The

helical segments (as defined in the PDB structures) are colored red, residues in the hydrophobic cores in green, and charged residues in CPK colors.
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3. Beyond SA models: important properties of

nonpolar solvation that need to be explicitly modeled

Many of the solvation phenomena that give rise to the

complex conformational dependence of nonpolar solvation

are reasonably well understood, at least at a qualitative

level.17,49,53,58 Nonetheless, their importance in accurate mod-

eling of protein conformational equilibria has not been fully

appreciated. In this section, we discuss two physical properties

that are believed to be critical for accurate modeling of

nonpolar solvation.

3.1 Length-scale dependence of hydrophobic solvation

It has been recognized that there is a length-scale dependence

of the free energy cost of solvating hydrophobic solutes.42,74–76

Qualitatively speaking, small nonpolar solutes do not inter-

rupt the hydrogen bonding network of water. The associated

solvation free energy is largely entropic and depends on the

solute volume. In contrast, large solutes induce the formation

of an interface where the water molecules are involved in fewer

hydrogen bonds on average. Therefore, the solvation free

energy is proportional to the surface area. The crossover from

small to large length scale regimes occurs roughly around

10 Å.76,77 The effective sizes of exposed nonpolar amino acid

side chains range approximately from about 3 Å (for Ala) to

about 5 Å (for Trp), within the small length scale regime,

whereas folded proteins typically fall in the large length scale

regime. Therefore, such a length scale dependence of hydro-

phobic solvation is highly relevant in determining the equili-

bria of disordered, partially folded and folded protein

conformations.

In the current SA models the length scale dependence is

neglected and the parameter g is conformationally indepen-

dent. Such a simplification has been shown to result in two

artifacts, over-stabilization of pair-wise interactions and fail-

ure to predict cooperativity in three-body hydrophobic asso-

ciations.32 These can be demonstrated through the following

simple arithmetic. As the solvation free energy grows linearly

with volume for small solutes,42 effective surface tension

coefficient of closely packed nonpolar n-mers (n = 1, 2, 3),

defined as g(n) = DG(n)
np/A

(n), scales linearly with the effective

size, i.e., g(n) B g(1)n1/3. The stabilities of dimers and three-

body cooperativity contribution are defined as

W ð2Þ ¼ gð2ÞAð2Þ � 2gð1ÞAð1Þ ¼ gð2ÞDAð2Þ þ 2Dgð2ÞAð1Þ; ð2Þ

dF ð3Þ ¼W ð3Þ � 3W ð2Þ

¼ gð3ÞDAð3Þ � 3gð2ÞDAð2Þ þ 3ðDgð3Þ � 2Dgð2ÞÞAð1Þ; ð3Þ

where Dg(n) = g(n) � g(1) and DA(n) = A(n) � nA(1). The second

term in eqn (2) is positive considering Dg(2) 4 0, but vanishes if

g is assumed to be independent of the solute size. In other

words, the traditional SA models predict more negative W(2),

i.e., over-estimate the strength of pair-wise interactions. Such

over-stabilization can be (improperly) compensated by choos-

ing small values for parameter g, and such choices were indeed

found to give better results in simulating peptide fold-

ing.25,54,55 Given that g(n) B g(1)n1/3, eqn (3) can be reduced

to dF(3) B 3(Dg(3) � 2Dg(2))A(1) = �0.23g(1)A(1), which is

negative (i.e., cooperative). Considering that the average non-

polar solvation free energy is on the order of 2–3 kcal mol�1

for amino acid side chains,65 one can further estimate the

three-body contributions to be about 0.5 kcal mol�1 per

trimer. On the contrary, assuming a size-independent g = g0
reduces eqn (3) to dF(3) = g0(DA

(3) � 3DA(2)), which is positive

(i.e., anti-cooperative) based on the simple geometric consid-

eration that DA(3) � 3DA(2) 40. These observations were

confirmed by examining the PMFs of pair-wise and three-

body interactions of Leu and Phe side chain analogues in

various configurations in TIP3P and GBSW/SA solvents.32

Other studies have also identified limitations of SA models in

describing cooperativity and/or anti-cooperativity of hydro-

phobic associations.78,79

The implications of the above analysis in modeling protein

folding and conformational equilibria is substantial. On one

hand, a constant g needs to be sufficiently large to compensate

for lack of cooperativity in the model in order to maintain the

stability of compact folded structures; on the other hand, small

values of g are desirable not to under-estimate the probability

of extended conformations with exposed nonpolar side chains

or not to over-stabilize loosely packed misfolded conforma-

tions. Even with the empirical choice of small g (e.g., 5 cal

mol�1 Å�2 used in the examples discussed in the previous

section), systematic over-stabilization of pair-wise interactions

is evident. Furthermore, with such a small g, the stability of

fully folded (native) structures is likely under-estimated. These

implications explain the observations derived from extensive

REX-MD folding simulations of HP36 and protein A dis-

cussed in the previous section, and strongly argue that proper

description of the length-scale dependence is critical in implicit

modeling of hydrophobic interactions.

3.2 Solvent screening of dispersion interactions

SA models are based on the first-solvation-shell approxima-

tion, which assumes that energetics associated with various

nonpolar solvation effects are largely dominated by short-

range effects. However, these effects can have substantially

different dependence on the solute composition and conforma-

tional state, and the simple linear relationship of eqn (1) can

fail. For example, the total nonpolar solvation free energy can

be further decomposed into a repulsive cavity term and an

attractive solute–solvent dispersion interaction term,60

DGnp ¼ DGcav þ DGvdW; ð4Þ

where DGcav is the free energy cost of cavity formation in

water, and DGvdW is the free energy for establishing the

solute–solvent vdW dispersion interactions. DGcav and DGvdW

have opposite signs and are anti-correlated with one another.

It has been shown that only the cavity formation can be

described by eqn (1) with a universal (i.e., solute chemical

composition independent) g.49,58,60 In contrast, the solute–

solvent dispersion term depends strongly on the atomic com-

position of the solute,58 and only approximately tracks the

surface area. For example, while fitting the calculated solva-

tion free energies of a series of n-alkanes in a fixed (all trans)

conformation to eqn (1) yields g B 12.3 cal mol�1 Å�2, all

conformational dependence of the solvation free energies of

n-butane, n-pentane and n-hexane shows a much steeper
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dependence on surface area, with a similar g B 110 cal mol�1

Å�2.49 This can be explained by considering that DGvdW is

mainly determined by the number of carbons and is thus

largely independent of the conformation state. As such, the

conformational dependence of the solvation free energy is

dominated by the cavity formation term. This highlights the

necessity of the explicit decomposition of eqn (4) in order to

properly describe the conformational dependence of nonpolar

solvation. Furthermore, it has also been shown that buried

atoms in proteins can contribute substantially to the solute–

solvent dispersion interaction,60,80 which can not be properly

described by the solvent exposed area alone. Indeed, explicit

inclusion of the solute–solvent dispersion interaction term has

been shown to significantly improve the description of the

conformational dependence of solvation free energy of small

solutes58,59 and proteins.60,81

The consequences of an insufficient description of

the solute–solvent dispersion interaction by SA models on

modeling protein conformational equilibria can be further

understood by considering the influence on the balance

of intramolecular vdW interactions and nonpolar solvation.

Let’s first consider the more realistic case of explicit solvent.

Solutes are fully solvated at large separation, with extensive

dispersion interactions with solvent. Upon contact,

some solute atoms are buried and their dispersion interactions

with solvent are substantially attenuated. The associated

energy cost can be largely captured by the surface area

reduction. While the rest of the solute atoms do not

make any direct contact to contribute to the surface area

change, there is a free energy cost due to displacement

of solvent molecules by medium-range solute atoms. In

other words, there is a non-negligible effective solvent

screening of the medium-range solute–solute dispersion inter-

actions. An insufficient description of such screening by

SA models again over-estimates the strength of nonpolar

interactions. This is illustrated in Fig. 4, where we compare

interactions between a Trp side chain and the alanine dipep-

tide with and without the backbone atoms in TIP3P, GBSW/

SA and GBMV/SA. The backbone atoms of alanine dipeptide

do not make any direct contact with the Trp side chain even at

the contact minimum. The presence of the backbone atoms

increases the dimer stability by 0.6 kcal mol�1 in TIP3P,

whereas the increases are 1.32 kcal mol�1 in GBSW/SA and

0.95 kcal mol�1 in GBMV/SA, larger than the TIP3P result.

Free energy decomposition analysis reveals that the over-

estimation of the stability increase is indeed due to neglecting

solvent screening of the (medium-range) vdW dispersion

interactions between the alanine dipeptide backbone and Trp

side chain, which makes a full contribution of 1.25 kcal mol�1

to the stability increase in GB/SA models. Therefore, explicit

inclusion of solute–solvent dispersion interaction, such as

using the decomposition of eqn (4) is necessary to achieve a

proper balance between nonpolar solvation and intramole-

cular vdW interactions.

3.3 Toward accurate implicit modeling of nonpolar solvation

The length-scale dependence of both hydrophobic solvation

and solvent screening of solute–solute dispersion interactions

need to be properly described for accurate implicit modeling of

nonpolar solvation. It has been proposed that solvent screen-

ing of solute–solute dispersion interactions can be described

using a continuum vdW solvent model.60 The basic idea is to

assume that the average water (oxygen) number density is

constant outside of the solute volume, such that the atomic

solute–solvent dispersion interaction energy can be evaluated

Fig. 4 PMFs of interactions between a Trp side chain and the alanine dipeptide (a) without and (b) with the peptide backbone (here the backbone

atoms include the capping methyl groups), in three solvent models. The partial charge of Ca is reduced to �0.18 e.u. from �0.27 e.u. to maintain

neutral total charge when the backbone is deleted. The backbone is in a fully extended (all trans) conformation. The reaction coordinate is defined

as the distance from the Cb atom of alanine dipetide to the heavy atom plane of the Trp side chain. The same GBSW/SA and GBMV/SA

parameters as in Fig. 1 and 2 were used. The stabilities (in units of kcal mol�1) of dimers in TIP3P, GBSW/SA, and GBMV/SA are (a) without

backbone: �1.13, �1.45, and �1.77; (b) with backbone: �1.73, �2.77, and �2.75, respectively. The (free) energy decompositions of the PMFs in

GBSW/SA are shown by the dotted traces. The electrostatic component (Elec) includes both Coulomb interactions and GB electrostatic solvation

free energy. The Elec, SA, and vdW contributions (in kcal mol�1) to the dimer stabilities at the contact minima are (a) without backbone: +0.58,

�0.23, and �1.80; (b) with backbone: +0.53, �0.25, and �3.05, respectively. Note that the contact minimum distance shifts slightly from 3.5 to

3.4 Å in all solvent models in the presence of the backbone atoms.
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by volume integrals,

DGvdW � rw
X
i

Z
solvent

u
ðiÞ
vdWðjr� rijÞdr; ð5Þ

where (rw = 0.0036 Å�3) is the water bulk number density at

standard conditions. u(i)vdW is the solute–solvent dispersion

interaction potential for atom i, which is typically defined

based on the WCA decomposition of the Lennard-Jones

potential.60 In principle, the integral can be evaluated effi-

ciently either using a surface integral approach,59 or by a pair-

wise descreening approximation.82 It can also be directly

evaluated using the same numerical quadrature techniques

employed to calculate the Born radii.64,83 The associated

increase in the computational cost is either negligible or

marginal. For example, less 1% increase in computational

cost is observed when the numerical quadrature is used.83

Note that both terms in eqn (4) are big and they largely cancel

each other. The net nonpolar solvation energy, DGnp, is of at

least one order of magnitude smaller than either DGcav or

DGvdW. Therefore, a practical challenge is to achieve sufficient

numerical accuracy for both components such that a reliable

estimation of the net energetics can be made.

Proper description of the length scale dependence requires a

reliable estimation of some effective local curvature, Rc.

Theoretical relations can be then used to derive the local

effective surface tension, such as in the scaled particle theory,75

gðRcÞ � g1ð1� 2d=RcÞ; ð6Þ

where ginf is the limiting surface tension of a flat surface, and d
is the Tolman length. d is of the order of the solvent size.

Accurate estimation of the local surface curvature of complex

molecular shapes is computationally expensive.84 Alterna-

tively, one might infer the effective curvature for each non-

polar group based on the number and type of contacts that it is

involved in.32 A local contact mass can be first computed,

McðiÞ ¼ mðiÞ þ
X
jai

mðjÞHðdijÞ; ð7Þ

where m(i) is the effective mass of nonpolar group i. H(dij) is a

contact switching function that decreases from one at short

distance smoothly to zero at large distance. The inter-group

average distance, dij = (
PP

r�1nm)
�1, allows some resolution of

different contact poses for planar functional groups such as

aromatic rings. The effective local curvature can then be

estimated as

Rc ¼ R0 þ ðkMcðiÞÞ1=3; ð8Þ

where the constant k is related the mass density and R0 is

related to the solvent size. eqn (8) can be viewed as the first

term in a shape and density expansion, which represents a

spherical shape with uniform mass density. Such a model

allows an efficient estimate of the conformational dependence

of g, and is referred to as an SA model with varying g
(VGSA).32 The main parameters include gN for each func-

tional group. Additional, effective mass and solvent size para-

meters (R0 and d) might also be parameterized, such as to

reproduce the solvation free energy of amino acid side chain

analogues and stabilities of nonpolar interactions. It has been

demonstrated that such a model has the ability to resolve the

two main artifacts of SA models with fixed g, suppressing

over-stabilization of pair-wise interactions, and at the same

time, correctly predicting cooperative three-body hydrophobic

associations.32

To arrive at a working implicit solvent force field that can be

reliably applied to model protein folding and conformational

transitions, it is necessary to combine the explicit solute–

solvent dispersion interaction term with a cavity term that

includes conformation dependent g’s. Such a ‘‘complete’’

model should be carefully parameterized to capture the deli-

cate balance between intramolecular vdW interactions and

nonpolar solvation. Furthermore, co-optimization of the im-

plicit solvent parameters together with the protein force field

will be critical for achieving sufficient balance of electrostatic

solvation, nonpolar solvation and various intramolecular

interactions. Small model peptides and fast folding proteins

with extensive experimental thermodynamic data will be ex-

tremely useful in such parameterization attempts.15,25,29 It

needs to be emphasized that even with a reduced representa-

tion of the system, achieving sufficient sampling of the protein

conformational space remains one of the most challenging

problems in computational biology. Advanced sampling tech-

niques such as REX should continue to play an important role

in improving the convergence of computed thermodynamic

properties to allow direct comparison with experiments.

While conservatively optimistic, we recognize that actual

improvement in modeling protein folding and conformational

transitions with extended treatment of nonpolar solvation has

yet to be demonstrated. In fact, there are many reasons to be

pessimistic on whether a sufficiently balanced, yet reasonably

efficient, implicit solvent force field for proteins can eventually

be achieved. Some of main challenges include the following.

First, an extremely high level of accuracy is required, con-

sidering that the average thermodynamic stability of proteins

is only up to the order of 0.1 kcal mol�1 per residue.85 Second,

substantial limits exist in the modern protein force field under-

lying the implicit solvent models.9,10 In particular, it is clear

that there is a systematic tendency to under-estimate the

solvation free energy of key protein functional groups65 and

to over-estimate solute–solute interactions.86,87 The current

limited success of implicit solvent force fields relies heavily on

parameterization to achieve sufficient cancellation of errors.

However, it seems that some aspects of the protein force fields,

particularly regarding aromatic side chains,66,67 will need to be

improved along with the construction of the implicit solvent

models. Third, conceptual difficulty remains in fast analytical

estimation of the ‘‘local’’ surface curvature. The approxima-

tion of eqn (8) relies on contact order to infer the local

curvature and has limited resolution of alternative packing

geometries. Fourth, due to the short-range nature of disper-

sion interactions (with a r�6 dependence), the volume integral

of eqn (5) is highly sensitive to the definition of surface and

parameters such as solvent (probe) radius and input radii of

solute atoms. Achieving sufficient (numerical) accuracy for

both (large) terms in eqn (4) to arrive at a reliable estimation

of the (small) net nonpolar solvation free energy is challenging

in practice. Finally, further complications arise from break-

downs of the continuum approximation at short range. The
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presence of backbone and other charged atoms can induce

order or disorder in the local water structures, giving rise to

nontrivial secondary contributions.88 It has also been argued

that polar and nonpolar solvation is coupled and one might

need to solve an optimization problem to derive the most

appropriate solvent accessible surface.89 The implications of

these secondary effects on the modeling of protein conforma-

tional equilibria are unclear, even though it appears that the

current implicit solvent models are far too inaccurate to justify

a meaningful attempt to incorporate these effects for protein

simulations.

4. Concluding discussions

Implicit solvent has emerged as one of the most powerful

techniques for classical simulation of proteins and other

biomolecules in aqueous solution, offering a favorable com-

promise between speed and accuracy. Central to the implicit

treatment of solvent is the estimation of the solvation free

energy. The most accurate approaches require decomposition

of the total solvation free energy into electrostatic and non-

polar components. Electrostatic solvation is usually described

by the well-estabilished continuum electrostatics representa-

tion, and the associated energetics can be evaluated efficiently

using the genearalized Born (GB) approximation. The non-

polar solvation free energy is of smaller magnitude compared

to the electrostatic component, and is often either largely

ignored or simply estimated from the solvent accessible surface

area (SA). As such, nonpolar solvation remains one of the

least reliable aspects in most GB/SA models. One of the

important limitations of SA models is the insufficient descrip-

tion of the conformational dependence of solvation. However,

it is understood that capturing the delicate balance between

intramolecular van der Waals (vdW) interaction and nonpolar

solvation is critical for modeling protein conformational equi-

libria. Therefore, it is essential to further improve the implicit

treatment of nonpolar solvation.

Comparison of the stabilities of nonpolar dimers in implicit

and explicit solvents reveals a systematic bias to over-estimate

the pair-wise nonpolar interactions in the current GB/SA

models. Such over-stablilization does not only increase the

roughness of the underlying potential surface and hinders

rapid sampling of the conformational space, but also intro-

duces severe distortion to the free energy landscape such that

the global minimum may no longer correspond to the true

native basin. Extensive folding and unfolding simulations of

model peptides and proteins appear to support the above

observations. These simulations also suggest that, with exten-

sive optimization of the electrostatic solvation models, non-

polar solvation has become the critical bottleneck. For

example, near native conformations could be reached for

two small helical proteins, HP36 and protein A, with largely

correct secondary elements arranged in native-like packings.

The bottleneck to the fully folded conformations appears to be

formation of hydrophobic cores for both proteins, highlight-

ing the importance of re-balancing the nonpolar interactions.

We argue that two main physical properties of nonpolar

solvation need to be properly described in order to improve

beyond the current level of accuracy, the length-scale depen-

dence of hydrophobic solvation and solvent screening of

solute–solute dispersion interactions. Ignoring these two pro-

perties in the traditional SA models leads to systematic over-

stabilization of the pair-wise nonpolar interactions, consistent

with the observations discussed above. Furthermore, the

length-scale dependence of hydrophobic solvation gives rise

to cooperativity in multi-body hydrophobic associations,

while the popular SA models with a constant g incorrectly

predict anti-cooperativity. Promising solutions for explicit

inclusion of both properties have been proposed. Solvent

screening of dispersion interactions can be described by a

continuum vdW solvent model, and the length-scale depen-

dence of hydrophobic solvation might be captured by inferring

the local curvature from the residue contact order. Extensive

co-optimization of these models together with other compo-

nents of the force field (e.g., electrostatic solvation and in-

tramolecular interactions) is necessary in order to eventually

derive a fully balanced implicit solvent force field. The para-

meterization is expected to be a formidable task and substan-

tial challenges exist. Nonetheless, we enthusiastically believe

that it is critical to improve the implicit treatment of nonpolar

solvation and that efforts along the directions outlined will

substantially improve one’s abililty to accurately model

protein folding and conformational transitions.
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