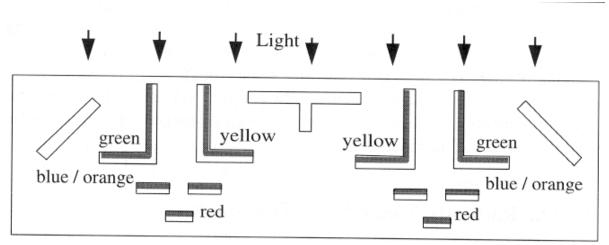
CS 428: Fall 2009 Introduction to Computer Graphics

Radiosity

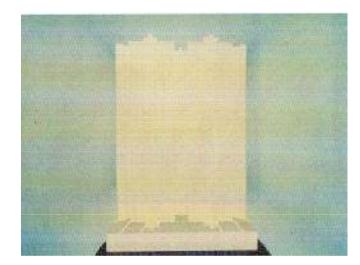
Problems with diffuse lighting

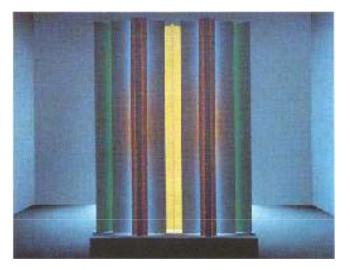


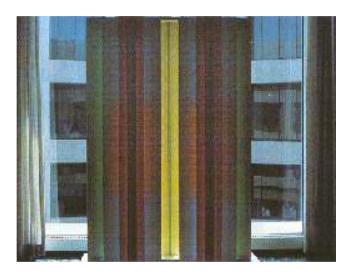
All visible surfaces, white.

A Daylight Experiment, John Ferren

Problems with diffuse lighting

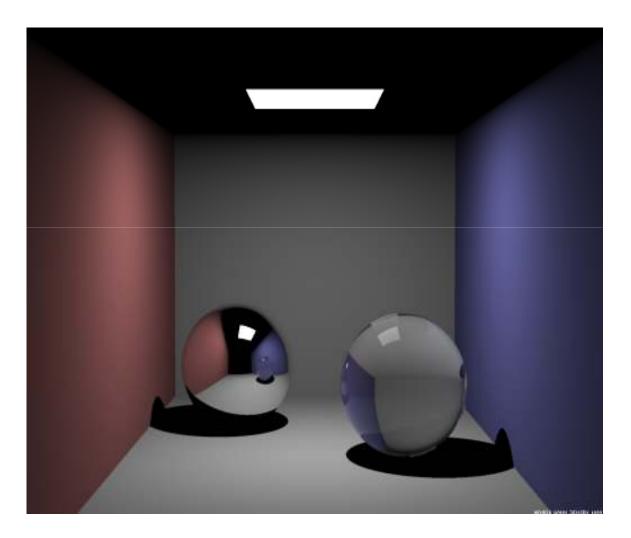




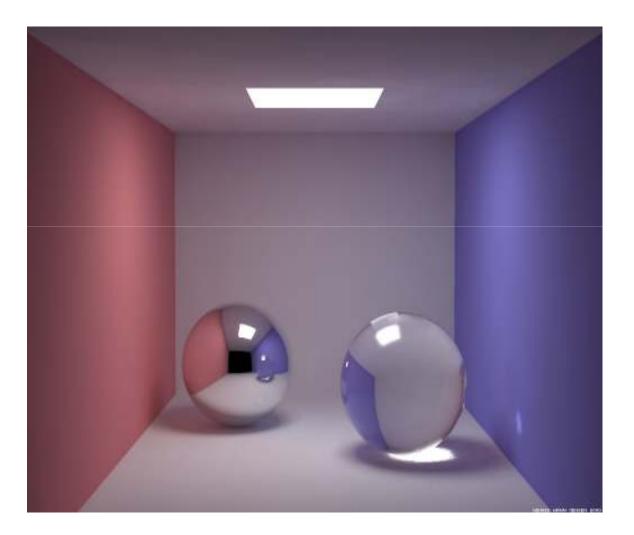


Andrew Nealen, Rutgers, 2009

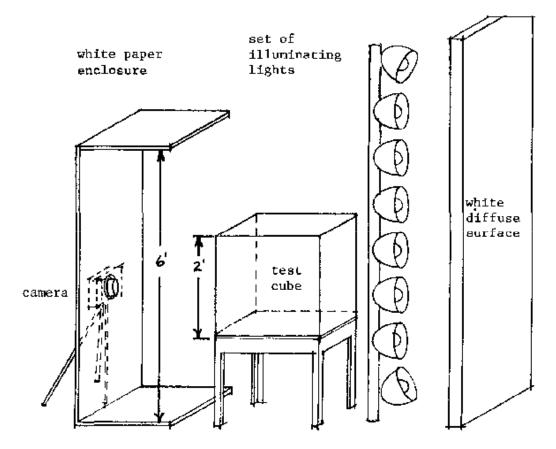
Direct lighting



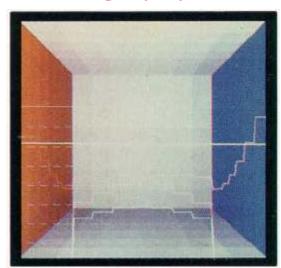
Global lighting



Cornell box



Goral, Torrance, Greenberg & Battaile Modeling the Interaction of Light Between Diffuse Surfaces SIGGRAPH '84



Simulation

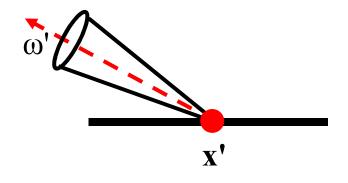
Andrew Nealen, Rutgers, 2009

Cornell box

 Calibration and measurement allows comparisons between reality and simulation



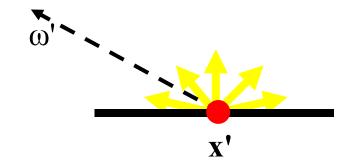
Light Measurement Laboratory Cornell University, Program for Computer Graphics Andrew Nealen, Rutgers, 2009



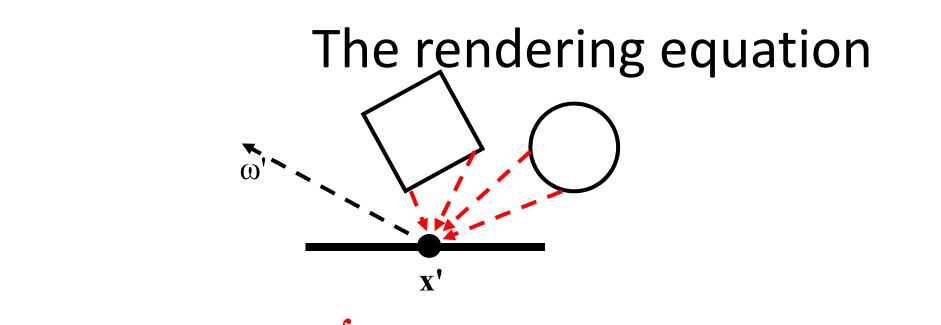
$$L(\mathbf{x',\omega'}) = E(\mathbf{x',\omega'}) + \int \rho_{\mathbf{x'}}(\omega,\omega')L(\mathbf{x,\omega})G(\mathbf{x,x'})V(\mathbf{x,x'}) dA$$

L (x', ω ') is the radiance from point x' in direction of ω '

Radiance is measured in [W/(m²·sr)] http://en.wikipedia.org/wiki/Radiance



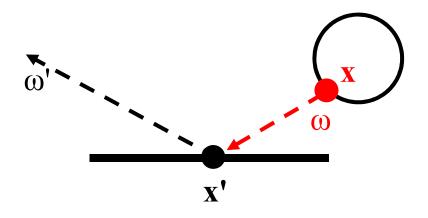
$L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$ E(x',\omega') is the emitted radiance: E is greater zero for light sources



$$L(\mathbf{x}',\omega') = E(\mathbf{x}',\omega') + \int \rho_{\mathbf{x}'}(\omega,\omega')L(\mathbf{x},\omega)G(\mathbf{x},\mathbf{x}')V(\mathbf{x},\mathbf{x}') \, d\mathbf{A}$$

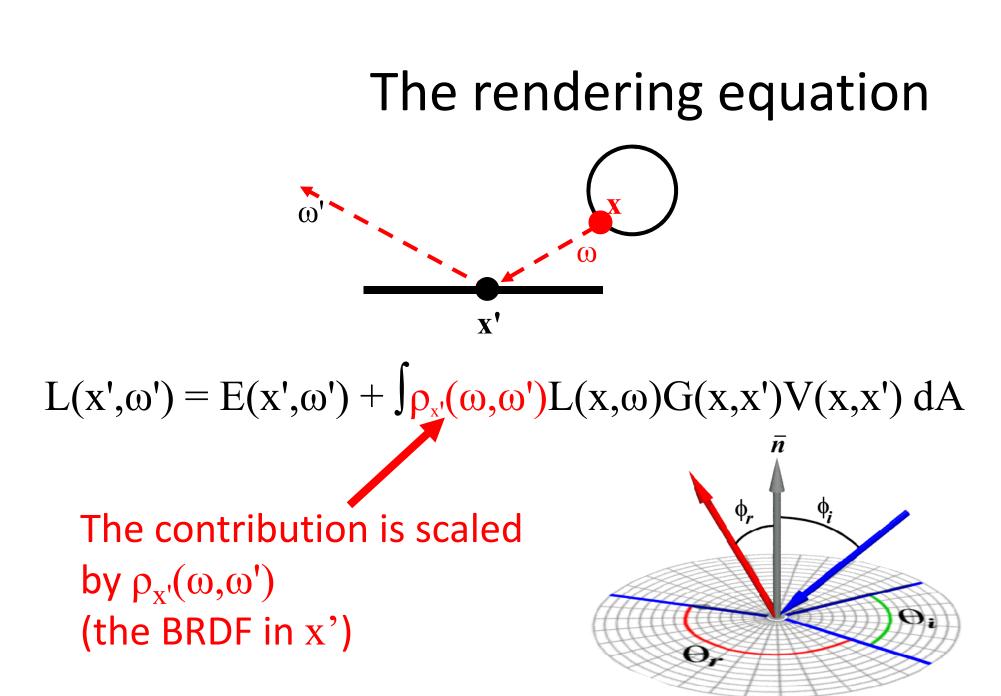
Sum of contributions from all other scene elements to the radiance from point x ' in direction of ω'

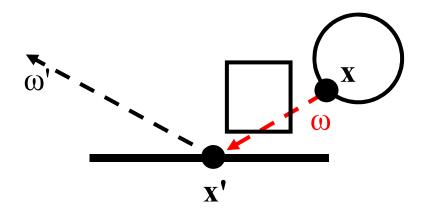
Andrew Nealen, Rutgers, 2009



$$L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$$

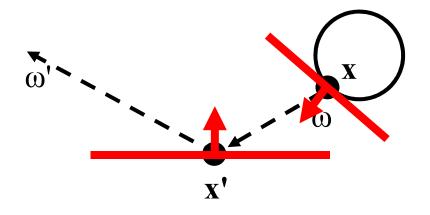
For every x, compute L(x, \omega), the radiance
in point x in direction \omega (from x to x')





 $L(\mathbf{x}',\omega') = E(\mathbf{x}',\omega') + \int \rho_{\mathbf{x}'}(\omega,\omega')L(\mathbf{x},\omega)G(\mathbf{x},\mathbf{x}')\mathbf{V}(\mathbf{x},\mathbf{x}') \, d\mathbf{A}$

For every x, determine V(x,x'), the visibility from x relative to x': 1 if there is no occlusion in direction ω , 0 otherwise

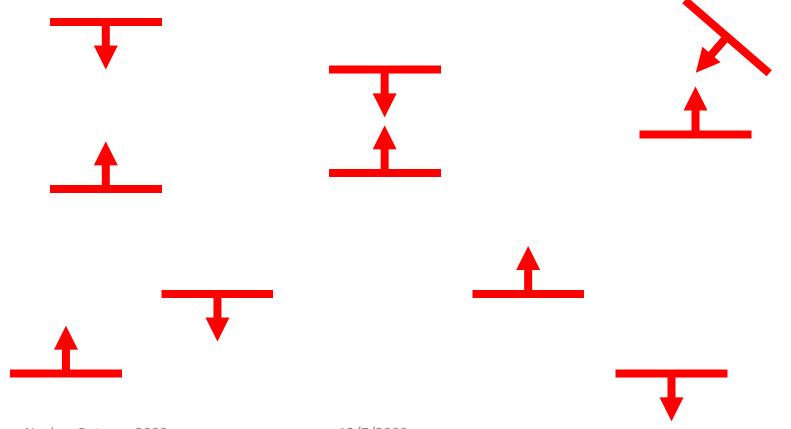


$$L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$$

For every x, compute G(x, x'), the
geometry term w.r.t. x and x'

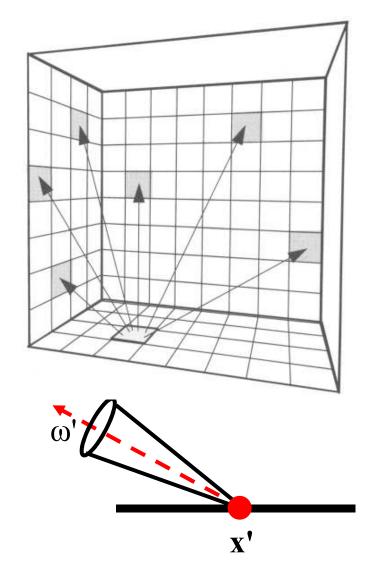
G(x,x')?

Which constellation leads to a large exchange of light and why?



The radiosity assumptions

- Surfaces are Lambertian (perfectly diffuse)
 - Reflection occurs in all directions
- The scene is split into small surface elements
- The radiosity B_i, is the total radiosity that comes from element i
- For each element, the radiosity is constant



The radiosity equation

 Continuous radiosity equation Reflection factor

$$B_{x'} = E_{x'} + \rho_{x'} \int G(x,x') V(x,x') B_x$$

Form factor

- G: geometry term
- V: visibility term
- Properties
 - No analytical solution, even for simple scenes

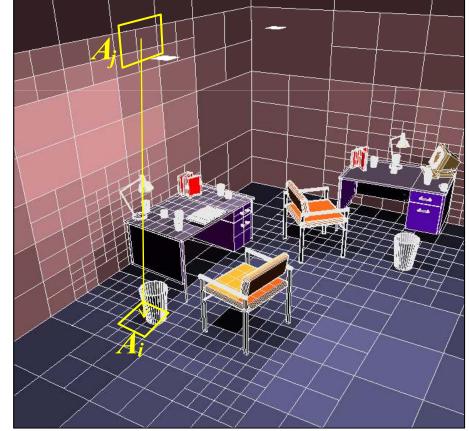
The radiosity equation

 Discretize into elements with const. radiosity Reflection factor

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{n} F_{ij} B_{j}$$

Form factor

- Properties
 - Iterative solution
 - Expensive geometry computations



Andrew Nealen, Rutgers, 2009

The radiosity matrix

$$B_i = E_i + \rho_i \sum_{j=1}^n F_{ij} B_j$$

• n linear equations in n unknowns B_i :

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & & \\ \vdots & & \ddots & \\ -\rho_n F_{n1} & \cdots & \cdots & 1 - \rho_n F_{nn} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{bmatrix}$$

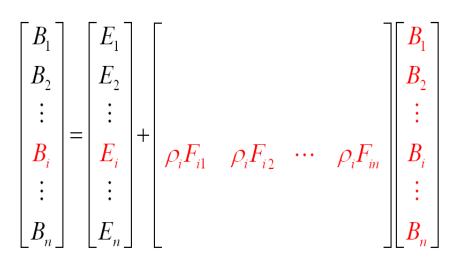
The solution of this LSE results in B_i, which are independent of viewer position and direction

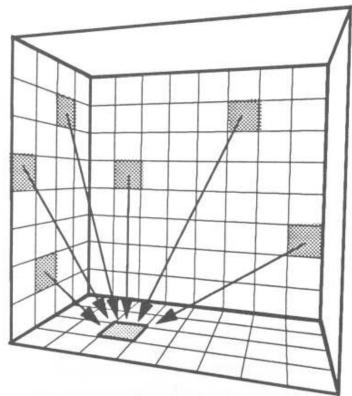
The radiosity matrix

Iterative solution

 The radiosity of an element is replaced by the multiplication of a row with the current

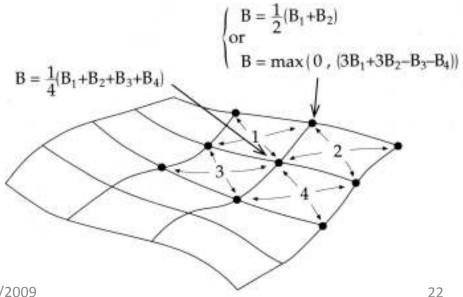
solution vector (Gathering)
(= Gauss-Seidel iteration)



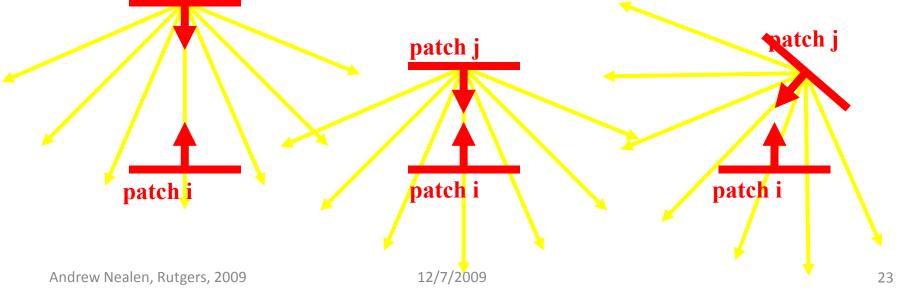


Rendering the radiosity solution

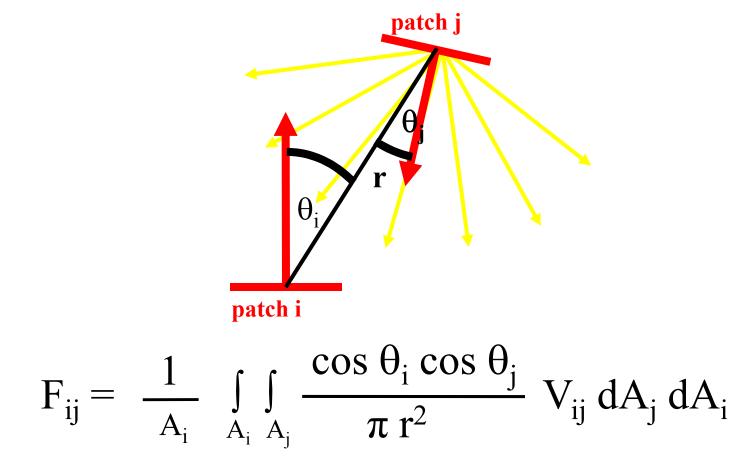
- B_i are constant per Element
- How to map to graphics hardware?
 - Average radiosityvalues for each vertex
 - Extrapolate for vertices on the boundary



- F_{ij} = Part of radiance from j that reaches i
- Influenced by:
 - Geometry (area, orientation, position)
 - Visibility (other elements of the scene)
 patch j



F_{ii} = Part of radiance from j that reaches i



Andrew Nealen, Rutgers, 2009

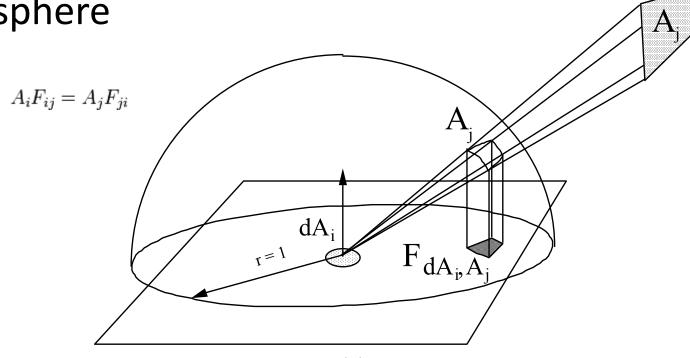
Ray casting

Ai

- Create n rays between 2 elements
 - n typically between 4 und 32
 - Determine visibility
 - Integrate point-point form factors
- Determines form factors between elements

Ai

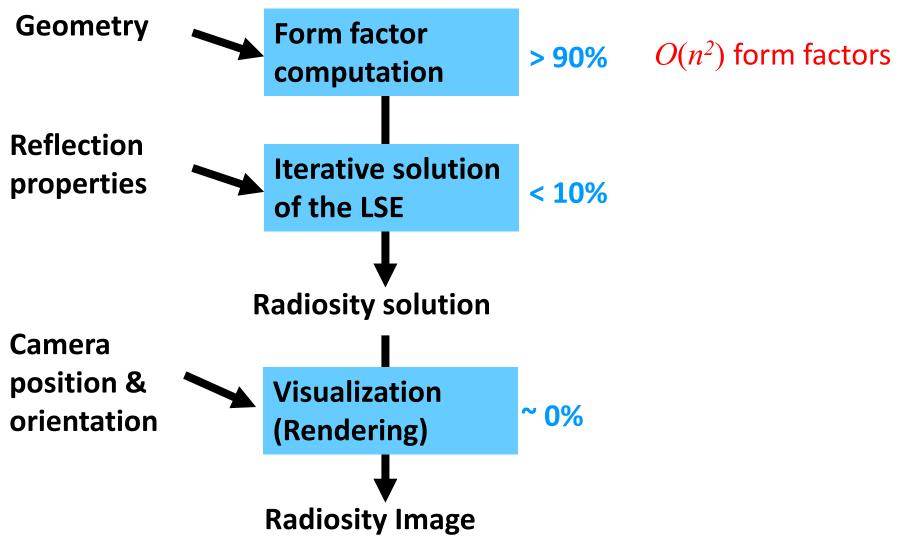
 Nusselt analog: the form factor is equivalent to the part of the unit circle, which the projection of the element occupies on the unit sphere



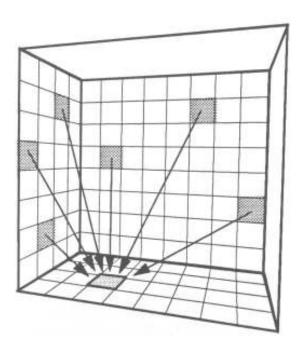
Hemicube algorithm

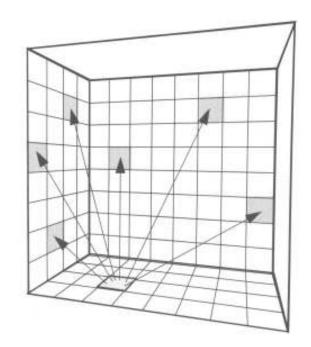
- Place hemicube at element center
- Discretize the sides into pixels
- Project and rasterize other elements into cube
- Each hemicube pixel contains precomputed form factor
- Form factor for an element is the sum of contributions
- Visibility by depth buffer

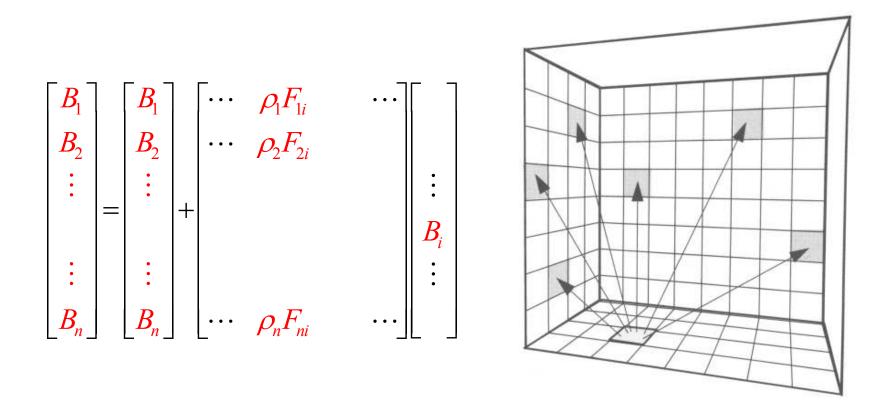
Solving the radiosity equation



 Idea: instead of collecting radiosity from all sources ("gathering"), rather distribute radiosity from brightest emitters ("shooting")







i

- Each patch has remaining radiosity ΔB_i
- Start with $B_i = E_i$ and $\Delta B_i = E_i$
- Distribute ΔB_i to the scene
- Reciprocity:

$$B_{i} = E_{i} + r_{i} \sum_{j=1}^{n} B_{j} F_{ij}, \text{ for all}$$
$$A_{j} F_{ji} = A_{i} F_{ij}$$
$$B_{i} = E_{i} + r_{i} \sum_{j=1}^{n} B_{j} F_{ji} \frac{A_{j}}{A_{i}}$$

 After sending from patch j, the radiosity of elements A_i is increased

$$B_i = B_i + r_i \Delta B_j F_{ji} \frac{A_j}{A_i}, \ i = 1..n$$

The nondisributed radiosity is also increased

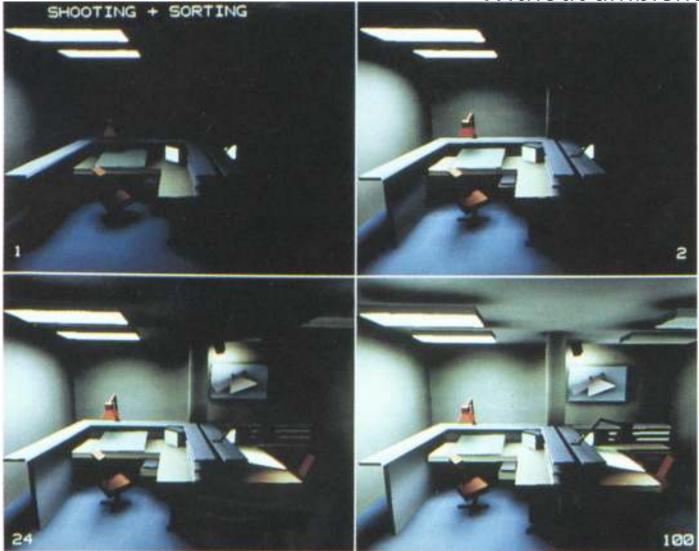
$$\Delta B_i = \Delta B_i + r_i \Delta B_j F_{ji} \frac{A_j}{A_i}, \ i = 1..n$$

• The set undistributed radiosity of j to zero $\Delta B_i = 0$

Progressive refinement Advantages

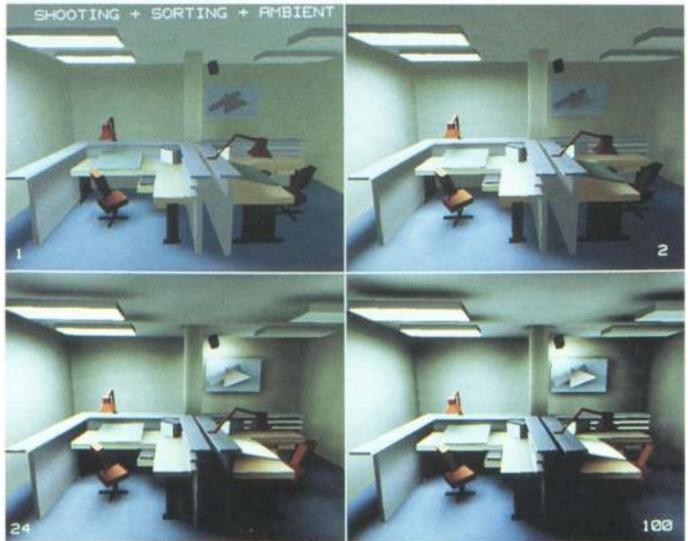
- Each iteration only requires form factors F_{ij} for element i w.r.t. all other patches
- Good results after few iterations, resulting in significantly less overhead when compared to Gauss-Seidel iterations
- Only requires storing a single column of the form factor matrix

Without ambient term



Andrew Nealen, Rutgers, 2009

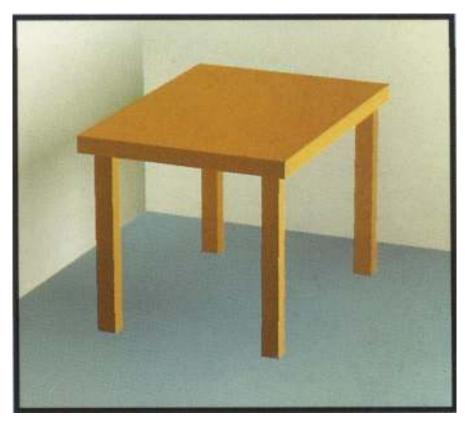
With ambient term



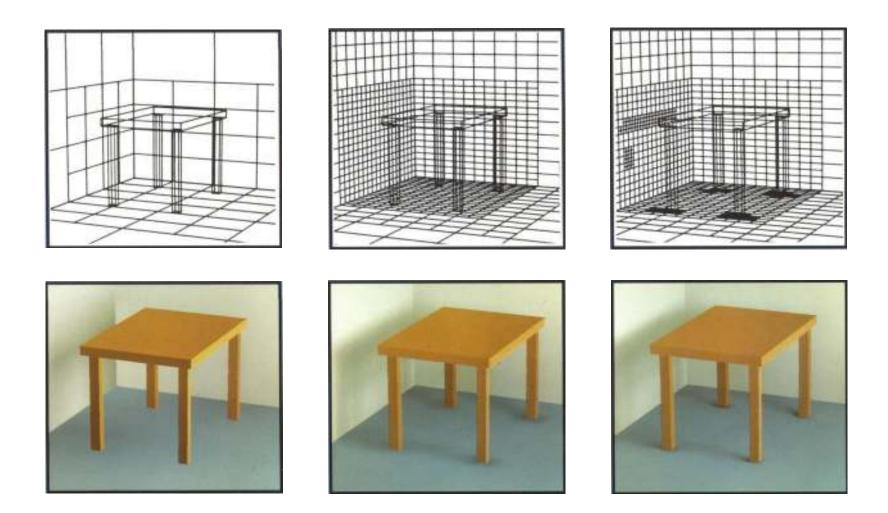
Andrew Nealen, Rutgers, 2009

Discretization into patches

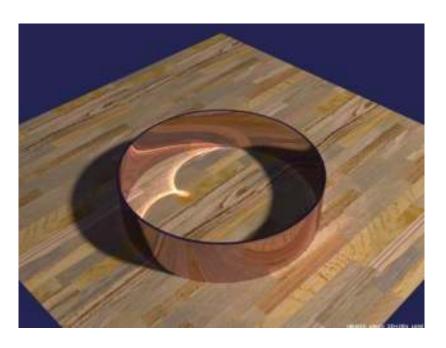
- Image quality depends on the size of patches
 - Smaller patches smaller error
- Patches should be adaptively subdivided where large gradients in radiosity are evident
 - Start with regular grid
 - Subdivide based on quality criterion



Discretization into patches



Photon Mapping Jensen 95



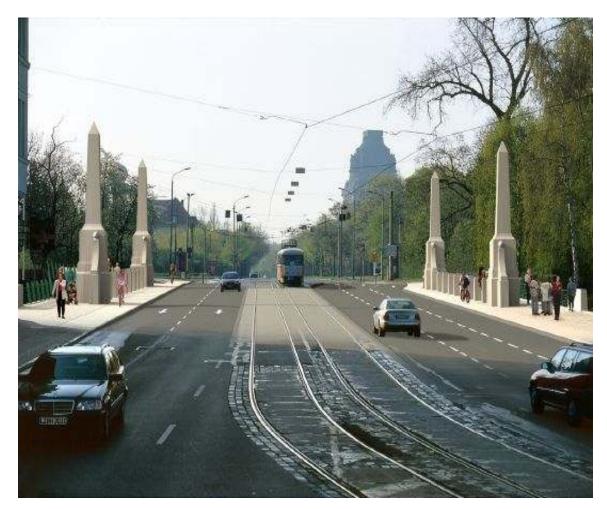
Examples

http://www.lightscape.com

Andrew Nealen, Rutgers, 2009

Lightscape

Examples



Mental Ray

Andrew Nealen, Rutgers, 2009