CS 428: Fall 2009 Introduction to Computer Graphics

Raytracing

"Forward" ray tracing

From the light sources

- Simulate light transport one ray at a time
- Rays start from lights + bounce around the scene
- Some hit the camera (extremely few!)
- Very expensive to compute
- Under-sampling! So: nobody does this ()

"Backward" ray tracing

From the eye

- Use ray casting from camera to scene
- Much faster (all rays say something about image)
- An approximation
- Use known lighting models (diffuse, specular, etc)
- No caustics, inter-object reflection
- (Can be fixed/combined with other techniques...)

Raytracing

- Albrecht Dürer „Der zeichner des liegenden weibes", 1538 Impression of Velo von Alberti (1404-1472)

Recursive raytracing

- Turner Whitted 1979: Model for Integrating
- Reflection
- Refraction
- Visibility
- Shadows
- (Basic) raytracing simulates the light transport and adheres to the rules of ideal reflection and refraction

Recursive raytracing

Assumptions

- Point light sources
- Materials
- Diffuse mit specular component (Phong model)
- Light transport
- Occluding objects (Umbras, but no penumbras)
- No light attenuation
- Only specular light transport between surfaces (Rays are only followed along directions of ideal reflection)

Recursive raytracing

Turner Whitted [1979]

Recursive raytracing

Examples

- Raytracing ist extremely suitable for scenes with many mirroring and transparent (refracting) surfaces

Recursive raytracing

- Synthetic camera
- Defined by an eye point and image (view) plane in world coordinates
- The image plane is an array of pixels, with the same resolution as the resulting image

Recursive raytracing

- Rays are cast into the scene from the eye point through the pixels

Recursive raytracing

- If the ray intersects with more than one object, then the nearest intersection is drawn
- Otherwise, draw the background color

Recursive raytracing

- If a ray intersects with an object, then additional rays are cast from the point of intersection to all light sources

Recursive raytracing

- If these "shadow feelers" intersect with an object, then the first intersection point is in shadow

Recursive raytracing

- If the object is reflective, a reflected ray (about the surface normal) is cast into the scene

Recursive raytracing

- If the object is transparent, a refracted ray (about the surface normal) is cast into the scene

Recursive raytracing

- New rays are generated for reflection, transmission (refraction) and shadow feelers
- Rays are parameters of a recursive function
- Detects all visible surfaces intersected by rays, shades them, and returns the result (= color)

Lighting model

- Lighting on a surface is combined of
- Ambient +
- Diffuse +
- Specular (highlights and reflection) +
- Transmitted (refracted)
- Equivalent to the Phong-model plus contributions from reflected and refracted rays

Lighting model

- $L_{\text {sum }}=L_{\text {Phong }}+r_{r} L_{r}+r_{t} L_{t}$
- L_{r} is the luminance of the reflected ray
- L_{t} is the luminance of the transmitted ray
- r_{r} is the reflectance (in $[0,1]$) for ideal reflection
- r_{t} is the reflectance (in $[0,1]$) for ideal transmission

Rays

- Data structure
- Point of origin $\mathbf{p}+$ direction \mathbf{d}

- Parametric equation

$$
r(t)=p+d \cdot t
$$

- If \mathbf{d} is normalized, t is distance from \mathbf{p} to $\mathbf{p + t d}$

Camera setup

canonical opens L camera

$$
\begin{aligned}
u & =x-a x i s \\
v & =y \text {-ans gamer } \\
n & =2-\log (\text { loss down }-z) \\
\text { eye } & =(0,0,0)
\end{aligned}
$$

Camera setup

Aspect ratio $r=W / H$
Determine W and H from θ and r

$$
\text { pixel } x, y \in[-1,1]^{2}
$$

$$
\vec{u} x+\vec{v} y-\vec{n}(n e a r) \quad \rightarrow N \mathrm{~N}
$$

Intersecting rays with objects

- Object representation?
- Implicit equations make intersections easier
- Surface is a set of points that satisfy

$$
F(x, y, z)=0
$$

- Example: sphere at the origin with radius 1

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}-1
$$

- As opposed to its explicit representation

$$
s(u, v)=\left(\begin{array}{ll}
\cos u \cos v \\
\sin u \cos v \\
\sin v
\end{array}\right) \quad \begin{array}{ll}
u \in[0,2 \pi) \\
v \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{array}
$$

Intersecting rays with objects

- Normal vector to an implicit surface

$$
\begin{aligned}
n\left(x, y, z_{0}\right) & =(\nabla F)\left(x, y_{0} z_{0}\right) \\
& =\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)\left(x_{0}, y_{0}, z_{0}\right)
\end{aligned}
$$

- For the previous example of a sphere

$$
\begin{aligned}
& F(x, y, z)=x^{2}+y^{2}+z^{2}-1 \\
& n(x, y, z)=[2 x, 2 y, 2 z]^{\top}
\end{aligned}
$$

Intersecting rays with objects

- Given a ray (pod)

- Intersection points found by solving

$$
F(p+t d)=0 \text { for } t
$$

- Quadratic in t for $F(x, y, z)=x^{2}+y^{2}+z^{2}-1$

What if object is not at origin?

- Implicit equation becomes more complex
- although sphere is still fairly easy
- Transform the ray with $\mathbf{M}^{\mathbf{- 1}}$

object coords

What if object is not at origin?

- Implicit equation becomes more complex
- although sphere is still fairly easy
- Transform the ray with \mathbf{M}^{-1}
- Transform back the intersection point(s)
- t is the same in both (don't normalize $\mathbf{M}^{-1} \mathbf{d}$)
- In other words, solve

$$
\mathrm{F}\left(\mathbf{M}^{-1} \mathbf{p}+\mathrm{t}\left(\mathbf{M}^{-1} \mathbf{d}\right)\right)=0
$$

Transforming intersection

object

Transforming intersection

- Why ($\left.\mathbf{M}^{-1}\right)^{\top}$ for normals?
- Given a vector \mathbf{v}_{o} in the tangent plane then

$$
\begin{aligned}
& \mathbf{n}_{0} \cdot \mathbf{v}_{\mathrm{o}}=0 \quad \text { (orthogonal) } \\
& \mathbf{n}_{0}^{\top} \mathbf{v}_{\mathrm{o}}=0 \\
& \mathbf{n}_{0}^{\top}\left(\mathbf{M}^{-1} \mathbf{M}\right) \mathbf{v}_{\mathrm{o}}=0 \\
& \underbrace{\left(\left(\mathbf{M}^{-1}\right)^{\top} \mathbf{n}_{0}\right)^{\top}}_{\mathbf{n}_{\mathrm{w}}^{\top}} \underbrace{M \mathbf{v}_{0}}_{\mathbf{v}_{\mathrm{w}}=0}=0
\end{aligned}
$$

Lighting recap

$$
\begin{aligned}
& I_{L_{i}}=L_{i} \cdot k_{a} \cdot T(u, v) \\
& +L_{i} \cdot \operatorname{aften}\left(d_{i}\right)-\operatorname{tin}_{i} \cdot T(u, v) \cdot k_{d} \cdot \max (0, \hat{n} \cdot \hat{l})-\text { diffuse } \\
& +L_{i} \cdot a t t e n\left(d_{i}\right) \cdot t_{i n} t_{i} \cdot t_{L_{5}} \cdot \max (0, \hat{v} \cdot \hat{r})^{\text {shin }} \quad \text { specular } \\
& I_{L}=\sum I_{L_{i}} \\
& \text { use } O \text { when } \hat{a} \cdot \hat{e} \text { no }
\end{aligned}
$$

Shadows

- Check if anything is between light and intersection point (ip) that would block light
- Send a ray from ip to
 each light to check if light illuminates ip
- Light blocked, tint = 0, otherwise tint = 1
- Will modify later for transparency

Shadows

- Ray cannot start at ip due to rounding errors

- When finding intersections, use a minimum acceptable value of t to be some eps >0

Ideal reflection

- Mirror reflection by law of reflection
- The incident and reflected ray form the same angle with the surface normal
- The incident and reflected ray and surface normal all lie in the same plane
- In polar coordinates: $\theta_{r}=\theta_{i}$ and $\phi_{r}=\phi_{i}+\pi$
- For view ray land (normalized) normal n

$$
\mathbf{r}=-\mathbf{l}+2(\mathbf{l} \cdot \mathbf{n}) \mathbf{n}
$$

Ideal reflection

> Geometry of Reflection law

Ideal reflection

Total reflection

- Transition from optically dense to less dense material $\mathrm{n}_{2}<\mathrm{n}_{1}$
- Rays refracted away from the surface normal
- There exists an incident angle θ_{T} with refraction angle of 90 응
- Once θ_{T} is exceeded

$$
\sin \theta_{T}=\frac{n_{2}}{n_{1}} .
$$

- All light reflected on the boundary between media
- Total reflection

