CS 428: Fall 2009
Introduction to

Computer Graphics



Visibility

= Also known as hidden surface removal

= Respect the nature of occlusion in visual scenes

K\ 5@5
N2 N
1es foul & act b2

no dmuh M, (:WH

= Algorithms for determining which parts of the
object/surfaces are visible

" For now only opaque objects



Visibility algorithms
i —

= Occlusion

= More than one point
projects to the same
point in the image

= Obviously, the point
closest to the observer is
visible

= Unless the closest point
is (semi)transparent, in
which case objects
behind become visible

Andrew Nealen, Rutgers, 2009 11/16/2009 3



Visibility algorithms

= Complexity

= Visibility computation is = = B
comparable to sorting | |

= Worst case complexity is | |

worse

" Given a scene withn | |
polygons, there might L '
exist ~n? visible parts . |

» Worst case complexity is SURN SR R S
O(n?)

Andrew Nealen, Rutgers, 2009 11/16/2009 4



Visibility

= Avariety of algorithms

* Each work better (more efficiently) in different
situations

= Two malin categories
= Object precision algorithms
" |[mage precision algorithms



Object precision

= Operate on geometric primitives

" For every object in the scene

= Compute visible part (not occluded by any other object
in the scene) - needs high precision

" Draw visible part
= Results are independent of display resolution
= Brute force algorithm is O(n?)

" n = number of objects on screen

" Can be improved (pre-computation) to O(nlog n)



Object precision

= Hard(er) to implement
" Due to numerical error

" Due to tricky geometric computations
(intersections, Boolean operations, etc.)

~ o



List priority methods

= Draw surfaces in back-to-front order

&/ ©

U‘mﬂ LE. 1(;)0“&‘_
= Painters algorithm .

Andrew Nealen, Rutgers, 2009 11/16/2009 8

KT




List priority methods

" Problem:
such an ordering does not always exist

W Y e

" |n such cases, polygons must be split

°~J

" This can result in many split polygons (see worst
case complexity)

Andrew Nealen, Rutgers, 2009 11/16/2009 9



List priority methods

= Observation:
polygons are drawn in the correct order if

4 A 2

" For every polygon part P

?

* Draw everything behind P s ° P a,:f s e &
= Draw P —~2

= Draw everything in front of P ¥i~?

Andrew Nealen, Rutgers, 2009 11/16/2009 10



Binary space partion (BSP)

= BSP tree: binary spatial subdivision

= A tree that encodes viewpoint-independent
and relative position/depth information

= Every node is a splitting plane, which cuts space
into two parts (two half-spaces)

" Leads to an ordering with respect to every line in
2D (plane in 3D, etc.)

= For visibility, the splitting (hyper)planes are
defined by the scene geometry



Binary space partion (BSP)

D E_l_
L. \\ N
—L

11/16/2009



Binary space partion (BSP)



Binary space partion (BSP)

\
\
\
\
\
X \
-
-
-
-,
/X
-,
-
-
-,
-,
-,

E
—T—
A >\C
I:'I\A\

\
Y F2
AN

B/A\C
/A

eeeeeeeeeeeeeeeeeeeeeeeee 11/16/2009



Binary space partion (BSP)

E;;l\_\Ez /A\
e /\ /\

F, D E; E;

Andrew Nealen, Rutgers, 2009 11/16/2009 15



Binary space partion (BSP)

S VA
el e AWA

\ ) 1 D E1 2

-
—~—
-
-
—
-~
-
-~
-
-
-
-~
-
-
~ -
-

Andrew Nealen, Rutgers, 2009 11/16/2009 16



Binary space partion (BSP)

. _1_2 A
R /N
SN /\ Al

\ ) 1 D E1 2

-
—~—
-
-
—
-~
-
-~
-
-
-
-~
-
-
~ -
-

Andrew Nealen, Rutgers, 2009 11/16/2009 17



Andrew Nealen, Rutgers, 2009

Binary space partion (BSP)

11/16/2009 18



Andrew Nealen, Rutgers, 2009

Binary space partion (BSP)

11/16/2009 19



Andrew Nealen, Rutgers, 2009

Binary space partion (BSP)

-
-
—
-
-
-~
—
-~
~ -
~—

11/16/2009 20



Binary space partion (BSP)

= Ordered list of polygons by traversal
= |dentify half-space H of eye position

" Traversal ordering
= Other half-space
= Polygon (node)
* Containing half-space H



Binary space partion (BSP)

-
-
—
-
-
-~
—
-~
~ -
~—

E,,C,E,,F,,A,D,BF,

Andrew Nealen, Rutgers, 2009 11/16/2009 22



Binary space partion (BSP)

= Some Issues

= Which plane to chose as the splitting plane
in each step?

" How to balance the tree?
" How to avoid excessive polygon splitting?

= Solution

= Re-run the algorithm!
= “Perfect” BSP is in NP (exponential complexity)

= Randomized version works well,
has good expected performance



lmage precision

You already know one: z-buffer

Z-buffer algorithm is an output sensitive
algorithm (only looks at rendered pixels)

Brute force

" For each pixel

" Find object closest to camera which projects to here
" Draw that object

Complexity is O(nP), while z-buffer is O(nPg)



lmage precision

" You already know one: z-buffer

= Z-buffer algorithm is an output sensitive
algorithm (only looks at rendered pixels)

= /-Buffer

" |nitialize depth image D to farthest distance

" For each pixel p of each polygon with depth d
= If d(x,y) < D(x,y)

= Replace D(x,y) with d(x,y) and write color of p into image



Ray casting

Preview for next lecture
Associate a ray with each pixel

Find object-ray intersection points
Choose closest point to the camera



