CS 428: Fall 2009 Introduction to Computer Graphics

Realism (overview)

Andrew Nealen, Rutgers, 2009

11/11/2009

Topic overview

- Image formation and OpenGL
- Transformations and viewing
- Polygons and polygon meshes
 - Programmable pipelines
- Modeling and animation
 - Parametric curves (and surfaces)
 - Procedural modeling
 - Traditional and procedural animation
- Rendering

Topic overview

- Image formation and OpenGL
- Transformations and viewing
- Polygons and polygon meshes
 - Programmable pipelines
- Modeling and animation

Rendering

- Object space hidden surface removal, bump mapping and other texture tricks
- Raytracing and radiosity

Next few lectures...

- Visibility (a.k.a. hidden surface removal)
 - Object space algorithms: BSP trees, traversal, etc.
- Illumination and shading (recap, etc.)
 - Bump mapping, shadows, reflection, refraction, antialising, etc.
- Rendering for realism
 - Raytracing (forward, backward, distributed)
 - Radiosity (gathering, shooting)

Methods for *realism*

- Ensure properties of images of visual scenes are enforced → many categories!
 - Computational models of lighting + illumination (shadows, reflections, caustics)
 - Computational models of surface properties (color, texture, fuzziness, roughness)
 - Geometric representations (surfaces)
 - Behavior (simulation, motion capture)
 - Consistency of scene (global illumination)
 - Interaction (frame rate lag, etc.)

Andrew Nealen, Rutgers, 2009

Methods for *realism*

- Ensure properties of images of visual scenes are enforced → many categories!
 - Computational models of lighting + illumination (shadows, reflections, caustics)
 - Computational models of surface properties (color, texture, fuzziness, roughness)
 - Geometric representations (surfaces)
 - Behavior (simulation, motion capture)
 - Consistency of scene (global illumination)
 - Interaction (frame rate lag, etc.)

Photorealism

Photorealism

Photorealism

Non-photorealism

Polygons vs. Smooth surfaces

Level of detail

Level of detail

Texture mapping

Environment mapping

Andrew Nealen, Rutgers, 2009

11/11/2009

Bump mapping

Image-based rendering

Motion capture

Simulation

Trade-off(s)

- Lots of computation to do
- Trade-off(s)
 - Quality vs. computation time
 - Quality vs. [cost, staff of artists, etc.]
 - Quality vs. [insert some resource here]

Real-time vs. off-line

Sweet spot

- Highly application dependent
 - Special effects
 - Games
 - Virtual reality
 - Computer aided design (CAD)
- Desired effect
 - "non-photorealistic" rendering

(Extreme) visual abstraction

Uncanny valley

Bukimi no tani The uncanny valley. Masahiro Mori 1970

Andrew Nealen, Rutgers, 2009

Uncanny valley Solved?

Andrew Nealen, Rutgers, 2009

11/11/2009

Uncanny valley Solved?

Andrew Nealen, Rutgers, 2009

11/11/2009

Uncanny valley State of the art

- Still images are continuously improving
 - Just a matter of time. Potentially solvable.
- Problem is exacerbated in human animation
 - Motion capture works for film.
 Infeasible for physical interaction in games.
 - Much research effort. Potentially solvable.

But what about digital interaction?

Historical development

Uncanny valley of Interaction

- Currently, meaningful interaction in photorealistic environments is quasi nonexistent.
- Limited to. Destruction. Shooting. Etc.
- Notable example. Exploration.
 - Sense-pleasure as a goal is possible.
 Explicit interaction goals other than the most primitive kind are generally absent.
- Other Direct interactions ?
 Indirect interactions/simulations ?
 Andrew Nealen, Rutgers, 2009

Visual interaction Abstraction

Simulated Reality Abstraction

Realism

- What is real lies in the eye of the beholder
- In order of increasing difficulty to get right
 - Still images
 - Animations
 - Interactions
- No fixed rules
 - It's all simulated anyway, and the sky is the limit