CS 428: Fall 2009 Introduction to Computer Graphics

Computer animation

11/4/2009

Animation

A brief history

- 1800s Zoetrope
- 1890s Start of film animation ("cells")
- 1915 Rotoscoping
 - Drawing on cells by tracing over live action
- 1920s Disney
 - Storyboarding (for story review)
 - Camera stand animation (parallax etc.)

Animation

A brief history

- 1960s Early computer animation
- 1986 Luxo Jr.
- 1987 John Lasseter's SIGGRAPH article
 - Applying traditional animation to CG animation (squash, stretch, ease in-out, anticipation, etc.)
- Before this
 - Tron (1982), Star wars (1977), etc.
- After this: artists needs became important!
 - Artists need a way of defining motion

Interpolation

- Interpolation of
 - Object/world geometry (positions)
 - Object/world parameters (angles, colors)
 - Object/world properties (lights, time of day)
- But what to interpolate between?
- Basic idea: keyframe interpolation
 - Sparse specification of key moments of an animation sequence

Keyframe interpolation

- Position / configuration
- Time of event

- Optional: velocity, acceleration, etc.
- Generate "in betweens" automatically
 - Interpolated motion paths are not unique

Keyframe interpolation

Position / configuration

- Time of event
- 8 0
- Optional: velocity, acceleration, etc.
- Generate "in betweens" automatically
 - Linear and/or splines (keyframes at the knots)

Interpolation examples

• Tweening – interpolate from one mesh to another with some mesh connectivity

) (3)

Interpolate vertices

$$A = M((1-t) + N(t))$$

$$a_i = M_i((1-t) + n_i(t))$$

$$\bigcap_{n o f \ t ime}$$

- Time warping adjust time to influence anim $M_{a} + T_{i} \qquad f(t) = T_{i} + (T_{a} - T_{i}) t \qquad f(o) = T_{i} \qquad f^{-1}(T_{i}) = 0$ $R_{a} + T_{a} \qquad f(t) = T_{i} + (T_{a} - T_{i}) t \qquad f(i) = T_{a} \qquad f^{-1}(T_{a}) = 1$ $A(T) = M((-f^{-1}(T)) + N \cdot f^{-1}(T))$
 - Perhaps use a spline to represent f
 - Gives animator more control
 - Move knots for an arclength parameterization

Interpolation examples

Simple linear interpolation h(t)in (pseudo) code double h (double +) $; f(t < t_{i})$ return h, $; f(t < t_{i})$ return $h_1 + \frac{t-t_1}{t_2-t_1}(h_2-h_1)$ if $(t < t_3)$ return $h_2 + \frac{t-t_2}{t_3-t_1}(h_3-h_2)$ return h_3

- Interpolate s as before
- Interpolating rotation angles can be tricky
 - = Euler angles $R_x(Q_x)R_y(Q_y)R_z(Q_y)$
 - Counterintuitive + erratic for distant keyframes
 - Use quaternions instead

Andrew Nealen, Rutgers, 2009

User interfaces for keyframes

Andrew Nealen, Rutgers, 2009

11/4/2009

Timelines /w function plots

Leg example

rotate (Hip, 0,0,1) upper-leg() ratate (Knee, 0,0,1) lowerleg rotate (Amakk, 0,0,1) $f_{00}+()$

Andrew Nealen, Rutgers, 2009

Timelines /w function plots

- A lot of work!
- Even worse: ankle depends on hip + knee!
- Kinematics: animation/w motion parameters (pos, vel, accel). No reference to forces

Andrew Nealen, Rutgers, 2009

Physically based animation

- Each moving object is a point in a force field
 - Position and velocity
 - Acceleration: computed from the environment and integrated over time to determine pos + vel

$$\frac{d(x)}{dt} = \begin{pmatrix} a \\ v \end{pmatrix} \quad v(t+\delta t) = v(t) + a(t) \delta t$$

$$x(t+\delta t) = x(t) + v(t) \delta t$$

- $\mathbf{f} = \mathbf{m} \cdot \mathbf{a}$ (or $\mathbf{a} = \mathbf{f/m}$) \rightarrow Newton's 2nd law
- Careful about choice of Δt !

Andrew Nealen, Rutgers, 2009

11/4/2009

Physically based animation

- Time step in Euler integration
 - Depending on stiffness of ODE, smaller time step

Physically based animation

- Time step in Euler integration
 - Depending on stiffness of ODE, smaller time step

Distance based Atrraction + repulsion forces

Andrew Nealen, Rutgers, 2009

11/4/2009

Accelerations

- Viscous drag a = k v
- Numerical stability
- Linearly depends on velocity
 - Air drag
 - Drag inside a liquid
 - k depends on medium in which object is immersed

Simulation loop

- Sum up all accelerations per point at time step t
 - Springs
 - Gravity
 - Attraction + repulsion
- Perform one step of Euler integration
 - Obtain updated velocity and position at time step t+1
- Repeat

Particle systems

- For modeling moving, amorphous phenomena
 - Fire, gas, water, explosions
- Collection of particles, where each has
 - Initial position and velocity
 - Initial size, shape, transparency
 - Shape
 - Lifetime

$$f_{avoid} = \frac{(p - obj)}{\|p - obj\|} \cdot k \|p - obj\|^{p}$$

Behaviors

For higher level control

- Flocking: three layered behaviors
 - Separation / collision avoidance
 - Steer to avoid crowding flockmates
 - Alignment / velocity matching
 - steer towards the average heading of local flockmates
 - Cohesion / flock centering
 - steer to move toward the average position of local flockmates

Simulation

Dynamics

$$f = ma = m \frac{d^{2}x}{dt^{2}}$$

$$v(t + \Delta t) = v(t) + \frac{f}{m} \Delta t$$

$$x(t + \Delta t) = x(t) + v(t) \Delta t$$

$$a(t) = accel is a function of time o$$

- Forces: gravity, viscous drag, attraction, etc.
- Collision detection + response?
- Animator control?

Alternatives

- Not always available
 - Leg motion or walking is too complicated

Alternatives

- Don't use keyframes, but instead constraints
 - "Keep foot flat on floor from frame 3-5"
 - "Elbow/hand is at position x"

- Given x, solve for θ_1 / θ_2 : inverse kinematics
 - Use of nonlinear equations solvers
 - Problems: non-uniqueness
 - Gets worse with more degrees of freedom (DOFs)
 - Use objective functions $E(\theta_1, \theta_2)$ and nearby solutions