CS 428: Fall 2009 Introduction to Computer Graphics

Computer animation

- 1800s - Zoetrope
- 1890s - Start of film animation ("cells")
- 1915 - Rotoscoping
- Drawing on cells by tracing over live action
- 1920s - Disney
- Storyboarding (for story review)
- Camera stand animation (parallax etc.)

Animation

A brief history

- 1960s - Early computer animation
- 1986 - Luxo Jr.
- 1987 - John Lasseter's SIGGRAPH article
- Applying traditional animation to CG animation (squash, stretch, ease in-out, anticipation, etc.)
- Before this
- Tron (1982), Star wars (1977), etc.
- After this: artists needs became important!
- Artists need a way of defining motion

Interpolation

- Interpolation of
- Object/world geometry (positions)
- Object/world parameters (angles, colors)
- Object/world properties (lights, time of day)
- But what to interpolate between?
- Basic idea: keyframe interpolation
- Sparse specification of key moments of an animation sequence

Keyframe interpolation

- Position / configuration
- Time of event

- Optional: velocity, acceleration, etc.
- Generate "in betweens" automatically
- Interpolated motion paths are not unique

Keyframe interpolation

- Position / configuration
- Time of event

- Optional: velocity, acceleration, etc.
- Generate "in betweens" automatically
- Linear and/or splines (keyframes at the knots)

Interpolation examples

- Tweening - interpolate from one mesh to another with some mesh connectivity

- Interpolate vertices

$$
\begin{gathered}
A=M \cdot(1-t)+N \cdot(t) \\
a_{i}=m_{i}(1-t)+n_{i}(t) \\
\uparrow_{\text {not time }}
\end{gathered}
$$

 $\because \pi ラ$ リ゙ Interpolation examples
－Time warping－adjust time to influence anim

$$
A(T)=M \cdot\left(1-f^{-1}(T)\right)+N \cdot f^{-1}(T)
$$

－Perhaps use a spline to represent f
－Gives animator more control

－Move knots for an arc－ length parameterization

Interpolation examples

- Simple linear interpolation in (pseudo) code
doable h (dash t)

$$
\begin{aligned}
& \text { if }\left(t<t_{1}\right) \\
& \text { return } h_{1} \\
& \text { if }\left(t<t_{2}\right)
\end{aligned}
$$

return $h_{1}+\frac{t-t_{1}}{t_{2}-t_{1}}\left(h_{2}-h_{1}\right)$
if $\left(t<t_{3}\right)$
return $h_{2}+\frac{t-t_{2}}{t_{3}-t_{2}}\left(h_{3}-h_{2}\right)$
return h_{3}

Interpolating parameters

$s=0$

$S=1$

$5=-1$

- Interpolate s as before
- Interpolating rotation angles can be tricky
- Euler angles $R_{x}\left(\theta_{x}\right) R_{y}\left(\theta_{y}\right) R_{r}\left(\theta_{2}\right)$
- Counterintuitive + erratic for distant keyframes
- Use quaternions instead

$$
\left[s, a_{x}, a_{y}, a_{2}\right] \quad \text { where } s^{2}+a_{x}^{2}+a_{y}^{2}+a_{z}^{2}=1
$$

User interfaces for keyframes

- Time lines not necessarily pictures, but va the

Typically 1 in 5 frames (in 30 frames/sec) are key frames
\rightarrow more than cell animation, since no haman there with good l judgeanant

Timelines /w function plots

- Leg example

rotate (Hip, 0.0.1) upper -leg ()
rotate (Knee, 0,0,1)
lowerleg
rotate (Alate, $0,0,1$) foot ()

Timelines /w function plots

(1)
(2)
(3) (4) (5) (6)
(7)

Timelines /w function plots

- A lot of work!
- Even worse: ankle depends on hip + knee!
- Kinematics: animation/w motion parameters (pos, vel, accel). No reference to forces

```
\(\left\{^{9}\left(.110^{\circ}\right)\right.\)
\[
\begin{aligned}
& \text { rotate (Hip, 0,0,1) } \\
& \text { upper -leg }() \\
& \text { ratite }(\text { Knee, } 0,0,1) \\
& \text { lowirlez } \\
& \text { rotate (Arak, } 0,0,1) \\
& \text { foot })
\end{aligned}
\]
```


Physically based animation

- Each moving object is a point in a force field
- Position and velocity
- Acceleration: computed from the environment and integrated over time to determine pos + vel

$$
\frac{d\binom{v}{x}}{d t}=\binom{a}{a} \quad \begin{aligned}
& \text { Euler integ (given } a(t) \text { } \begin{array}{l}
v(t+\Delta t) \\
\\
x(t+\Delta t)= \\
x(t)+a(t) \Delta t
\end{array} \\
&
\end{aligned}
$$

- $\mathbf{f}=\mathbf{m} \cdot \mathbf{a}($ or $\mathbf{a}=\mathbf{f} / \mathbf{m}) \rightarrow$ Newton's $2^{\text {nd }}$ law
- Careful about choice of Δt !

Physically based animation

- Time step in Euler integration
- Depending on stiffness of ODE, smaller time step

Physically based animation

- Time step in Euler integration
- Depending on stiffness of ODE, smaller time step

Accelerations

- Distance based Atrraction +
 repulsion forces

$$
\begin{aligned}
& \text { scaling } \\
& \text { constant }
\end{aligned}
$$

$$
k>0 \Rightarrow \text { attraction } ; k<0 \Rightarrow \text { repulsion }
$$

Accelerations

- Viscous drag $a=-k v$
- Numerical stability
- Linearly depends on velocity
- Air drag
- Drag inside a liquid
- k depends on medium in which object is immersed

Simulation loop

- Sum up all accelerations per point at time step t

$$
a_{\text {total }}=\sum a
$$

- Springs
- Gravity
- Attraction + repulsion
- Perform one step of Euler integration
- Obtain updated velocity and position at time step $\mathrm{t}+1$
- Repeat

Particle systems

- For modeling moving, amorphous phenomena
- Fire, gas, water, explosions
- Collection of particles, where each has
- Initial position and velocity
- Initial size, shape, transparency
- Shape
- Lifetime
- Etc.

$$
f_{\text {avoid }}=\frac{\left(p-o b_{j}\right)}{\left\|p-o b_{j}\right\|} \cdot k\left\|p-o b_{j}\right\|^{p}
$$

Behaviors

For higher level control

- Flocking: three layered behaviors
- Separation / collision avoidance
- Steer to avoid crowding flockmates

- Alignment / velocity matching
- steer towards the average heading of local flockmates
- Cohesion / flock centering
- steer to move toward the average position of local flockmates

Simulation

- Dynamics

$$
\left.\begin{array}{ll}
f=m a=m \frac{d^{2} x}{d t^{2}} & \begin{array}{c}
a(t) \\
\text {-accel } \\
\text { of time a functim }
\end{array} \\
v(t+\Delta t)=v(t)+\frac{f}{m} \Delta t & a, v, \\
x(t+\Delta t)=x(t)+v(t) \Delta t & x
\end{array} \quad \text { are vectors } \begin{array}{ll}
\text { is a paritio }
\end{array}\right\} R^{3}
$$

- Forces: gravity, viscous drag, attraction, etc.
- Collision detection + response?
- Animator control?

Alternatives

- Closed form solutions
bouncing ball:

$$
y(x)=A / \sin \left(\omega x+\theta_{0}\right) / e^{-k x} \text { amplitude angular freq }
$$

- Not always available
- Leg motion or walking is too complicated

Alternatives

- Don't use keyframes, but instead constraints
- "Keep foot flat on floor from frame 3-5"
- "Elbow/hand is at position $x^{\prime \prime}$

- Given x, solve for θ_{1} / θ_{2} : inverse kinematics
- Use of nonlinear equations solvers
- Problems: non-uniqueness

- Gets worse with more degrees of freedom (DOFs)
- Use objective functions $\mathrm{E}\left(\theta_{1}, \theta_{2}\right)$ and nearby solutions

