CS 428: Fall 2009 Introduction to Computer Graphics

Procedural modeling

10/28/2009

Procedural modeling

- Towards realism
 - Complexity = work (e.g. 2D/3D content creation)
 - Idea: put burden of *work* on computer for modeling relevant but nonspecific *detail*
 - Small specification → large range of detail/structure amplification
 - Examples
 - Mountains, trees, rivers, lightning, clouds, fire

Mountains

Andrew Nealen, Rutgers, 2009

10/28/2009

Clouds

Fractals

- Common approach in CG
- A *language* for complexity of form
- An engineering approach
 - Modeling by structural similarity
 - not based on reality
- Definition
 - A geometrically complex object constructed via repetition over a range of scales (sizes): leaves → trees → forests

Fractal self similarity

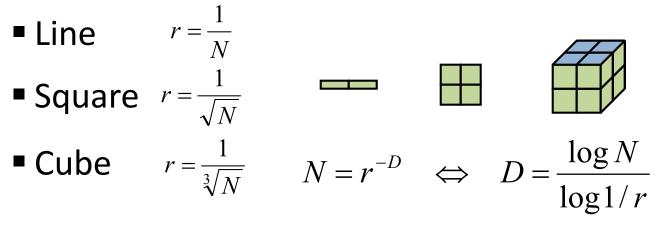
- Fractals have some geometrical scale invariance
- Example: Koch-curve
 - Each of the 4 line segments in the k-th step is a minified version of the entire curve in previous step by factor 1/3
 - Cropped detail of the original curve can not be distinguished from the original

Initiator

Step 3

Fractal dimension

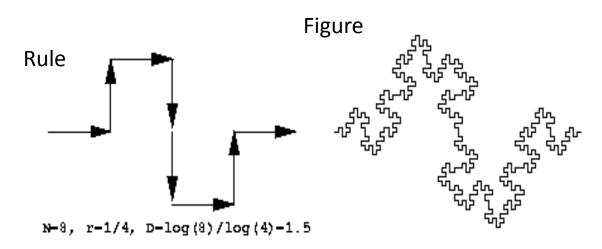
- For objects of dimensions 1, 2 and 3
- Subdivide into N equally sized parts



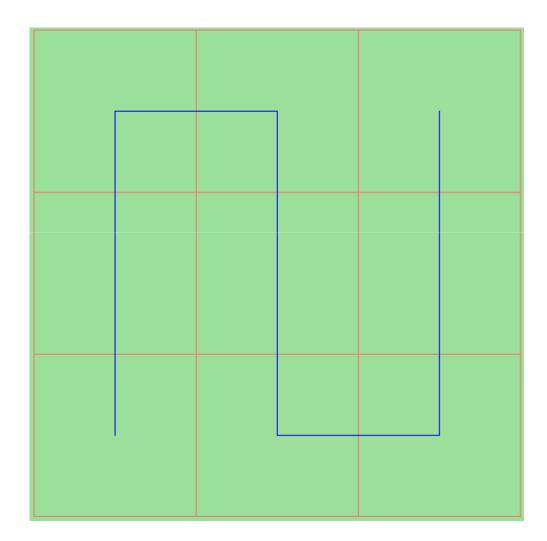
A segment of the Koch-curve is made up from N=4 parts, each scaled by r=1/3 $D = \frac{\log 4}{\log 3} = 1.2619$

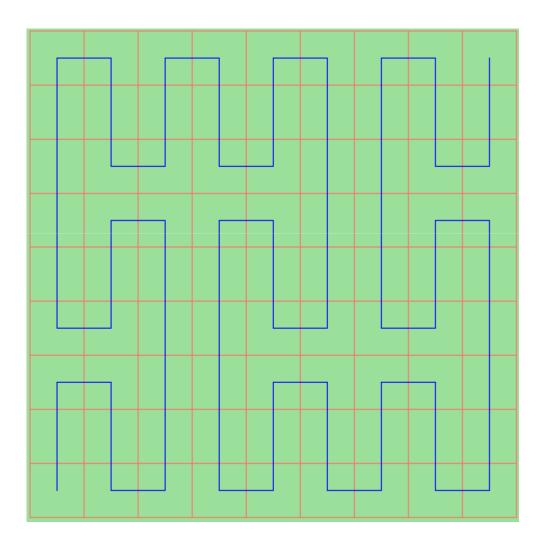
Fractal dimension

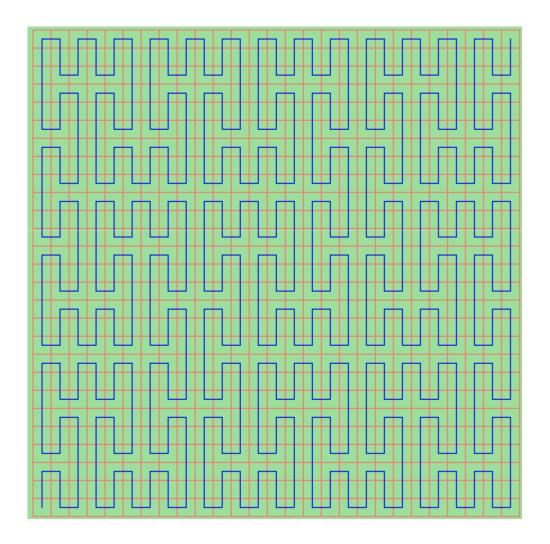
- Relation between number of parts N, and the associated scale factor r $D = \log N / \log 1 / r$
- D is the fractal dimension or the self-similarity dimension of the structure (*roughness*)

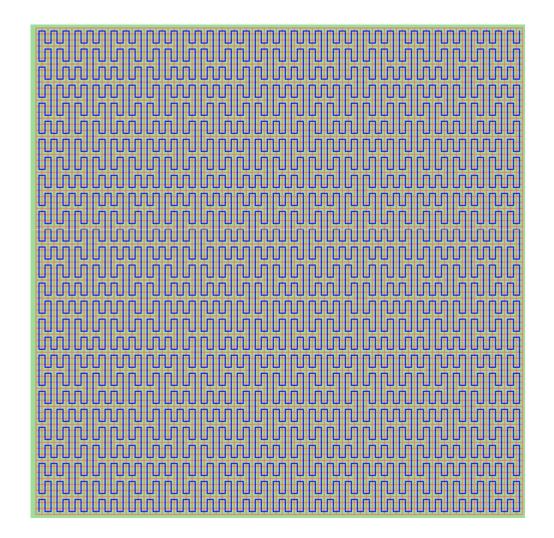


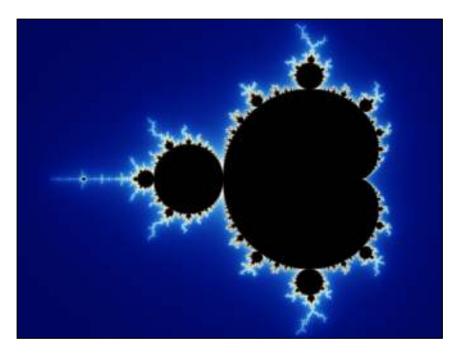
10/28/2009

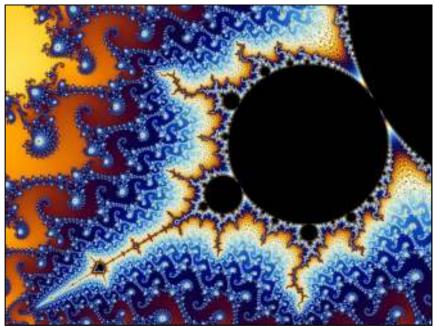










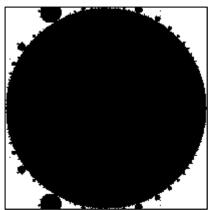


Mandelbrot set

float m(x₀,y₀, i_{max}) x = x₀ y = y₀

for i = 0 to i_{max} if $(x^2 + y^2 > 4)$ return i $(x,y) \leftarrow (x_0 + x^2 - y^2, y_0 + 2xy)$ end for return 0

end



Andrew Nealen, Rutgers, 2009

Fractals

- Build complexity from repetition
- Structure repetition
 - Frequency, amplitude and lacunarity (space filling)
- Beneficial features
 - Fine structure at all scales
 - Not regular
 - Self similar
 - Compact description

Stochastistic self similarity

- Natural objects such as farns or coastlines are not exactly identical when magnified
 - But characteristics are similar
 - Magnified coast line similar to original
 - This phenomenon is captured by stochastic selfsimilarity

Stochastistic fractals

- Used to model
 - Terrain, clouds, waves, tree bark, etc.
 - Useful for generating 3D wood/marble textures
 - Simulation of Brownian motion

Brownian motion

- Non-stationary stochastic process {X(t)}
- Increments X(t+s)-X(t) are Gaussian distributed with expected value of zero
- Variance of increments is proportional to time difference $\rightarrow var(X(t+s)-X(t)) \sim |s|$
- Statistically self-similar

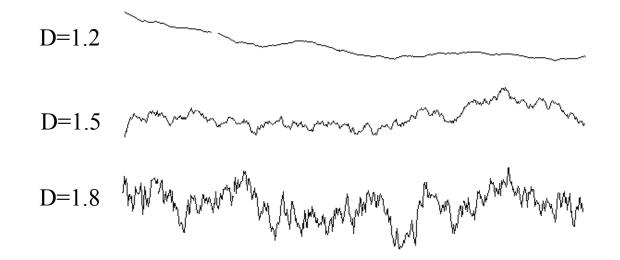
$$X(t)$$
 Statistically similar to $\frac{1}{\sqrt{r}}X(rt)$

r=0.5

r=0.125

Fractal Brownian motion

- Brownian motion has fractal dimension 1.5
- Dimension D of natural objects ranges from 1.15 and 1.25
 - Use of fractal Brownian motion (fBm)

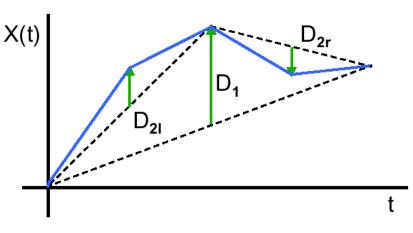


Brownian motion application

• Midpoint displacement (for $D \in [1,2]$)

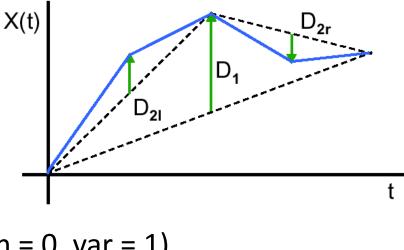
• Step 0: $X(1/2) = (X(0) + X(1))/2 + D_0$

- Step n: linear interpolation between neighboring points and displacement by D_n
 - D_n is a Gaussian distributed random variable with E(D_n)=0 and var(D_n)=(1-2^{2-2D})/2^{n(4-2D)}
- X(t) and 1/2^(2-D)X(2t) are statistically self-similar



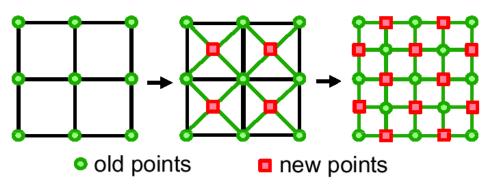
Brownian motion application

- Midpoint displacement (for $D \in [1,2]$)
- Case of D=1.5, with $E(D_n) = 0$ (mean = 0)
 - Start with var(D_n)=0.5 (for initial grid spacing of 1)
 - In each step, scale var(D_n) by 1/2
 - Same as var(D_n)=0.5 · (1/2)ⁿ
 - Use Random class in Java
 nextDouble() (in [0,1])
 nextGaussian() (mean = 0, var = 1)



Midpoint displacement in 2D

Create refined grid



- In every step the grid resolution is scaled by a factor of $r = \frac{1}{\sqrt{2}}$
- The variance of random displacements is scaled by

$$r^{4-2D} = \left(\frac{1}{2}\right)^{2-D}$$
 for D = 1.5 $r = \left(\frac{1}{2}\right)^{0.5} = \frac{1}{\sqrt{2}}$

Fractal trees

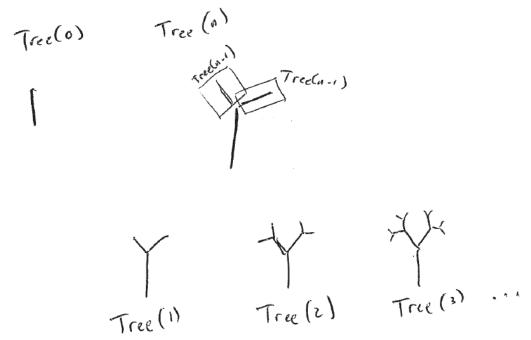
Hierarchical fractal modeling



Random angles, lengths, placements

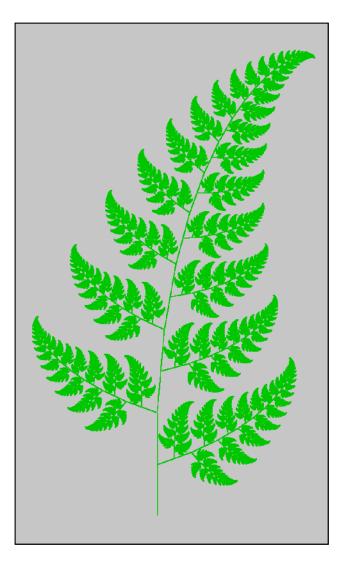
Fractal trees

- At end of recursion, add leaf
- leaf (a polygon)
- Decrease branch length and radius as recursion depth increases



10/28/2009

Fractal fern

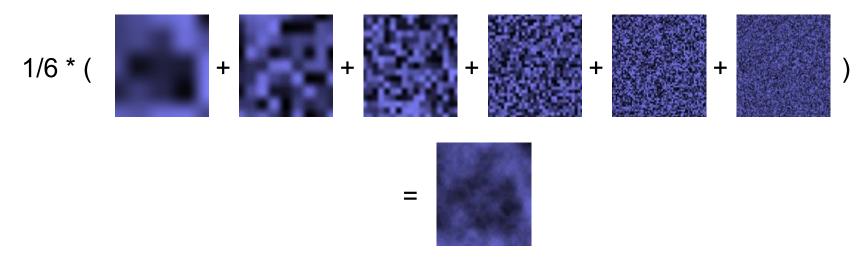


10/28/2009

Procedural textures

Perlin Noise

- Sum of band limited functions (octaves)
 - In uv space compute a pseudorandom number and a gradient
 - Interpolation (linear, cubic) between integer uv's provides a smooth band limited function



Procedural textures

Perlin Noise

