CS 428: Fall 2009 Introduction to Computer Graphics

Parametric curves and surfaces

Curve representation + design

- Loftsman spline
- Thin strip of wood/metal

- Shaped by fixed weights - "ducks"
- Produces (mostly) C² curves by minimizing bending energy
- Developed in 60s for industrial design
- Uses in CG
- Building models
- Paths of motion + interpolation in animation

Curve and surface representations

- Explicit representations

$$
\begin{array}{ll}
\mathbf{p}: R \rightarrow R^{d}, d=1,2,3, \ldots & \mathbf{q}: R^{2} \rightarrow R^{d}, d=1,2,3, \ldots \\
t \mapsto \mathbf{p}(t)=(x(t), y(t), z(t)) & (u, v) \mapsto \mathbf{q}(u, v)=(x(u, v), y(u, v), z(u, v)) \\
& \\
\mathbf{p}(t)=r \cdot(\cos (t), \sin (t), 0) & \mathbf{p}(u, v)=r \cdot(\cos (u) \cos (v), \sin (u) \cos (v), \sin (v)) \\
t \in[0,2 \pi] & (u, v) \in[0,2 \pi] \times[-\pi / 2, \pi / 2]
\end{array}
$$

- Implicit representations

$$
\begin{array}{ll}
f: R^{2} \rightarrow R & g: R^{3} \rightarrow R \\
K=\left\{\mathbf{p} \in R^{2}: f(\mathbf{p})=0\right\} & K=\left\{\mathbf{p} \in R^{3}: g(\mathbf{p})=0\right\} \\
& \\
f(x, y)=x^{2}+y^{2}-r^{2} & g(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}
\end{array}
$$

Mathematical curve representations

Explicit

$$
y=f(x)
$$

$$
\left.()^{n o t}\right)
$$

Implicit

$$
f(x, y, z)=0
$$

Parametric

$$
p(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

$$
\begin{gathered}
p(t)=\left[\begin{array}{l}
\cos (t) \\
\sin t
\end{array}\right]_{-1}^{x} t \in[0, \pi] \\
\underbrace{p(\pi)}_{-1} \underbrace{p(0)}_{x}
\end{gathered}
$$

Parametric curve derivatives

- Tangent vector: points in direction of curve as t changes

$$
P^{\prime}(t)=\frac{d P(t)}{d t}=\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right] \quad t \in[0, \pi]
$$

$$
\text { (all in } \begin{aligned}
& \text { ane picture. }) ~
\end{aligned}
$$

Piecewise definitions

- Piece together curves for varying parameter values

$$
p(t)= \begin{cases}{\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]} & t \in[0, \pi] \\
{\left[\begin{array}{c}
1 \\
t
\end{array}\right]} & t<0\end{cases}
$$

Parametric continuity

- $\mathbf{C}^{\mathbf{k}}$ - k -th order derivatives exist and are continuous (at joints)

Geometric continuity

- Signed direction of k-th derivates agree, not necessarily in magnitude (at joints)

$\mathbf{G}^{\mathbf{1}}$ but not $\mathbf{C}^{\mathbf{1}}$

$\mathbf{G}^{\mathbf{1}}$ and $\mathbf{C}^{\mathbf{1}}$

Representation

- Generate curve using ordered series of points
- Control polygon

- Which curve to generate?
- Interpolating
- Control points on curve

- Wiggles, unstable
- Approximating

- Control points "close" to curve
- Stable

Bézier curves

- De Casteljau algorithm (example for $\mathrm{t}=2 / 3$)

Bézier curves

- Animation of Bézier curves (from Wikipedia)

Bézier curves

Bézier curves

- Mathematical construction

$$
\begin{aligned}
& p_{03}(t)=\left(1-t p_{0_{2}}(t)+t p_{13}(t)\right.
\end{aligned}
$$

Bernstern polyanowinls

$$
\begin{aligned}
B_{k}^{d}(t)=\binom{d}{k} t^{k}(1-t)^{d-k} & \text { So } & \frac{p(t)}{} & =\sum_{i=0}^{d} p_{i} B_{i}^{d}(t)
\end{aligned} \begin{aligned}
\text { imanial }:\binom{d}{k} & =\frac{d!}{k!(d-k)!}
\end{aligned}
$$

Béziar curves

Bézier curves

- Matrix form

$$
p(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & \\
3 & 6 & 3 \\
-3 & 3 & & \\
1 & &
\end{array}\right]\left[\begin{array}{l}
\rho_{0} \\
p_{0} \\
p_{2} \\
p_{3} \\
p_{3}
\end{array}\right]
$$

- Easy to show
$\varlimsup_{\text {Sexier matrix }}$

$$
\sum_{i=0}^{d} B_{i}^{d}(t)=\underbrace{B_{0}^{3}(t)+B_{1}^{3}(t)+\ldots B_{3}^{3}(t)}_{\substack{\text { example for } \\ d=3}}=1
$$

- So this is an affine combination!

Bézier curves

- Bernstein polynomials as basis functions
- Form a basis of cubic polynomials that map $[0,1] \rightarrow \mathfrak{R}$
- Sum to 1 everywhere
- $p(0)=p_{0}$ and $p(1)=p_{3}$
- Affine invariance!

$$
\mathbf{T}\left(\sum_{i=0}^{n} p_{i} B_{i}^{d}(t)\right)=\sum_{i=0}^{n}\left(\mathbf{T} p_{i}\right) B_{i}^{d}(t)
$$

Drawing Bézier curves

$$
\operatorname{draw}\left(P_{0}, P_{1}, P_{2}, P_{3}\right)
$$

$$
\begin{aligned}
& d r \\
& \xi
\end{aligned}
$$

$$
P_{0} a^{\prime}
$$

$$
\because p_{3}
$$ \{

if $\left.\frac{\left|P_{0}-P_{1}\right|+\left|P_{T}-P_{2}\right|+\left|P_{2}-P_{3}\right|}{\left|P_{0}-P_{3}\right|}<(\mid+\varepsilon) \leftarrow \frac{\square I}{\square}\right\}$ if flat enough
line $\left(P_{0}, P_{3}\right)$
else $\ldots P_{01}=\cdots$
$\operatorname{draw}\left(P_{0}, P_{01}, P_{02}, P_{03}\right)$
$\operatorname{draw}\left(P_{03}, P_{13}, P_{23}, P_{3}\right)$
$\}^{3}$

Towards B-splines

- Using a degree ($\mathrm{N}-1$) curve with N points gets expensive and unstable with increasing N
- No local control, since each basis function is nonzero in [0,1]

- Possible solution: piecewise curves
- Formed from degree 3 Bézier curves
- How to join them to obtain C^{k} continuity?

Continuity

$$
Q_{1}=P_{3}+\left(P_{3}-P_{2}\right)
$$

More constraints

Still free to move

de Boor algorithm

- For cubic curves
- Split each edge in de Boor polygon into $1 / 3$'s
- Connect across corners, and split in half
- Has local control
- Moving b_{i} only effects nearby Bézier curves

B-splines

- Piecewise polynomial of degree d with $\mathrm{C}^{\mathrm{d}-1}$ continuity, specified by $\mathrm{n}+1$ control points $\left\{b_{k} \mid k \in 0, \ldots, n\right\}$ and a knot vector $\left\{\mathrm{t}_{\mathrm{k}} \mid \mathrm{k} \in 0, \ldots, \mathrm{n}+\mathrm{d}\right\}$ that contains $\mathrm{n}+\mathrm{d}+1$ values
- For now, knot vector is $\{0,1,2,3,4,5,6\}$

B-splines Definition

- Recursive definition of B-spline basis functions

$$
\begin{gathered}
p(t)=\sum_{k=0}^{n} b_{k} N_{k}^{d}(t) \\
N_{k}^{0}(t)=\left\{\begin{array}{l}
1 \text { for } t_{k} \leq t<t_{k+1} \\
0 \text { otherwise }
\end{array}\right. \\
N_{k}^{d}(t)=\frac{t-t_{k}}{t_{k+d}-t_{k}} N_{k}^{d-1}(t)+\frac{t_{k+d+1}-t}{t_{k+d+1}-t_{k+1}} N_{k+1}^{d-1}(t)
\end{gathered}
$$

- When the knots are equidistant, they are uniform, otherwise non-uniform

B-splines

Construction

- $N_{k}^{d}(t)$ is constructed from piecewise polynomials of degree d over t

$$
\begin{gathered}
N_{k}^{0}(t)=\left\{\begin{array}{l}
1 \text { for } t_{k} \leq t<t_{k+1} \\
0 \text { otherwise }
\end{array}\right. \\
N_{k}^{d}(t)=\frac{t-t_{k}}{t_{k+d}-t_{k}} N_{k}^{d-1}(t)+\frac{t_{k+d+1}-t}{t_{k+d+1}-t_{k+1}} N_{k+1}^{d-1}(t)
\end{gathered}
$$

- Local support of $N_{k}^{d}(t)$, meaning $N_{k}^{d}(t)=0$ for $t \notin\left[t_{k}, t_{k+d+1}\right]$
- Quadratic B-spline basis

B-splines

Knot multiplicity

- If t_{j} is a simple knot such that $t_{j-1} \neq t_{j} \neq t_{j+1}$ then $N_{k}^{d}\left(t_{j}\right)$ is C^{d-1} continuous
- For a knot $s=t_{j+1}=\ldots=t_{j+\mu}$ of multiplicity μ the BSplines N_{k}^{d} of degree d are $\mathrm{C}^{d-\mu}$ continuous

B-splines

Bernstein polynomials

- B-splines N_{k}^{d} contain the Bernstein polynomials B_{i}^{d} as a special case of knot multiplicity

$$
\mathbf{T}=(\underbrace{0, \ldots,}_{d+1}, \underbrace{1, \ldots, 1}_{d+1})
$$

Rational B-spline

$$
P(t)=\frac{\sum_{k=0}^{n} w_{k} b_{k} B_{k, d}(t)}{\sum_{k=0}^{n} \omega_{k} B_{k, j} d(t)}
$$

- Like having [x, y, z, w] with varying weights
- Useful for building exact conics (circle, etc.)
- Projective invariance

B-spline surfaces

- Tensor product surfaces
- Also works for Bézier curves/splines (Bézier patches)

