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Curve representation + design

" Loftsman spline
" Thin strip of wood/metal (—K})/

» Shaped by fixed weights — “ducks”

* Produces (mostly) C? curves by minimizing
bending energy

= Developed in 60s for industrial design
= Usesin CG

= Building models

" Paths of motion + interpolation in animation



Curve and surface representations

= Explicit representations

p:R—>R'd=123,... q:R> >R ,d=123,...
t = p(t) = (x(2),y(1),2(1)) (u,v) > qu,v) = (x(u,v), y(u,v), 2(u,v))

p(t)=r- (cos(t),sin(t),O) p(u,v)=r- (cos(u) cos(v), sin(u)cos(v), sin(v))
t €[0,27] (u,v)€[0,27]x[—7 /2, 72]

" Implicit representations
f:R*—>R g:R> >R
K={peR:/®)=0}  K={peR :g(p)=0

fey)=x*+y*=r g(x,y,z2)=x"+y>+z>-r’
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Parametric curve derivatives

= Tangent vector: points in direction of curve as
t changes NTZE C{Pff-) [_m f] Ll ]

car €

P fﬂ'\)
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Piecewise definitions

" Pjece together curves for varying parameter
values
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Parametric continuity

s Ck—k-th order derivatives exist and are
continuous (at joints)

() >



Geometric continuity

= Signed direction of k-th derivates agree, not
necessarilyzin magnitude (at joir;ts)
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Representation

= Generate curve using ordered series of points
= Control polygon P, P,
P,,, P2 Py

= Which curve to generate?

* |nterpolating m

= Control points on curve
= Wiggles, unstable

= Approximating
= Control points “close” to curve
= Stable



Bézier curves

= De Casteljau algorithm (example for t=2/3)

P, P12 P,

Union of all Point on the curve
parameter values t at parameter value
in [0,1] t=2/3



Bézier curves

= Animation of Bézier curves (from Wikipedia)

oF AP

t=0 of,




Bézier curves

= Mathematical construction

PLEs (-0 p + €,

liq
PJ_}
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Bézier curves

= Mathematical construction
P, = ((-tp, (& Ep, ()
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Bézier curves

rﬁ'

= Matrix form 2 P P.ﬁ_’
= ¢ £ ]j3 &3 j(

L1 Py |

J

Rrever matx

= Easy to show

d 1 | 3
Z‘Bj(“ s B(e)+B, (6 r.. B (6 = 1
i;ﬂ C e -

tﬁ‘aup"{c F;y‘“
d=3

= So this is an affine combination!
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Bézier curves

Bernstein polynomials as basis functions

~orm a basis of cubic
oolynomials that map

0,11 > %R
Sum to 1 everywhere

p(0) = pyand p(1) =
Affine invariance!

(zpl | j > (1550

B™(u)

1 +
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Drawing Bézier curves
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Towards B-splines

= Using a degree (N-1) curve with N points gets
expensive and unstable with increasing N

= No local control, since each basis function is
nonzero in [0,1]

f\h‘ﬁa;ﬂ uﬁ&;mﬁ'rt Cur/e Aoy (-:L [ Hee )

= Possible solution: piecewise curves

" Formed from degree 3 Bézier curves
= How to join them to obtain Ck continuity?



Bézier splines

Continuity
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de Boor algorithm

" For cubic curves
= Split each edge in de Boor polygon into 1/3’s
® Connect across corners, and split in half

= Has local control

* Moving b, only effects nearby Bezier curves



B-splines

= Piecewise polynomial of degree d with C¢1
continuity, specified by n+1 control points
{b, | k €0,...,n} and a knot vector
{t, | k € 0,...,n+d} that contains n+d+1 values

= For now, knot vector is {O 1,2,3,4,5,6}

b/i

o
F({F){:e[_‘a";} Fﬂr € € E-?' ﬁ']



B-splines

Definition
= Recursive definition of B-spline basis functions

p(t)= Zn:ka;f (¢)

k

O(t):{l fort, <t<t,,

0 otherwise
N} (0)= == N2 1)+ N )
lieva — U livarn — s

= When the knots are equidistant, they are
uniform, otherwise non-uniform



B-splines

Construction

= N,f(t) is constructed from piecewise
polynomials of degree d over t

IIIIIIIIII N,?(t): 1 fort, <t<t,,
""""" 0 otherwise

— AI —t— Nf(t)z [—1 N,f_l(t)—l— b — 1 N;f:(f)

l l l tk+d _tk tk+d+1 _tk+1

= Local support of N/(¢) , meaning N¢(¢)=0
fOr L & [tkﬂtk+d+1]
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= Quadratic B-spline basis

1 6@;3 ‘% BJ’(’ Eg"s
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B-splines
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B-splines

Knot multiplicity

" If ¢, is a simple knot such that 7, ; # £, # £,,, then
Nlt,)is C9-! continuous

. For.a kno;c §=t; /=...=t;, of multiplici.ty u the B-
Splines N; of degree d are C9* continuous




B-splines

Bernstein polynomials

= B-splines N;contain the Bernstein polynomials
B’ as a special case of knot multiplicity




Rational B-spline

P(¢) = > w b Bst)

e

n

2_ W, Bk! J({')

k: o

Like having [x, v, z, w] with varying weights
Useful for building exact conics (circle, etc.)

Projective invariance



B-spline surfaces

* Tensor product surfaces

= Also works for Bézier curves/splines
(Bézier patches)
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