
CS 428: Fall 2009

Introduction to

Computer GraphicsComputer Graphics

Parametric curves and surfaces

10/21/2009 1Andrew Nealen, Rutgers, 2009



Curve representation + design

� Loftsman spline

� Thin strip of wood/metal

� Shaped by fixed weights – “ducks”

� Produces (mostly) C2 curves by minimizing � Produces (mostly) C2 curves by minimizing 

bending energy

� Developed in 60s for industrial design

� Uses in CG

� Building models

� Paths of motion + interpolation in animation 
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� Explicit representations
p :R → Rd ,d =1,2,3,K

t a p(t) = x(t),y(t),z(t)( )

p(t) = r ⋅ cos(t),sin(t),0( )
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Curve and surface representations

� Implicit representations

  

p(t) = r ⋅ cos(t),sin(t),0( )
t ∈ [0,2π ]
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f :R2 → R

K = p∈ R2 : f (p) = 0{ }

f (x,y) = x 2 + y 2 − r2
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Mathematical curve 

representations
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Parametric curve derivatives

� Tangent vector: points in direction of curve as 

t changes
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Piecewise definitions

� Piece together curves for varying parameter 

values
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Parametric continuity

� Ck – k-th order derivatives exist and are 

continuous (at joints)
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Geometric continuity

� Signed direction of k-th derivates agree, not 

necessarily in magnitude (at joints)
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Representation

� Generate curve using ordered series of points

� Control polygon

� Which curve to generate?� Which curve to generate?

� Interpolating

� Control points on curve

� Wiggles, unstable

� Approximating

� Control points “close” to curve

� Stable
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Bézier curves

� De Casteljau algorithm (example for t=2/3)

p1
p2

p12

p
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Bézier curves

� Animation of Bézier curves (from Wikipedia)
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Bézier curves

� Mathematical construction
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Bézier curves

� Mathematical construction
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Bézier curves

� Matrix form

� Easy to show� Easy to show

� So this is an affine combination!
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Bézier curves

� Bernstein polynomials as basis functions

� Form a basis of cubic 

polynomials that map

[0,1] → ℜ[0,1] → ℜ

� Sum to 1 everywhere

� p(0) = p0 and p(1) = p3

� Affine invariance!
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Drawing Bézier curves
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Towards B-splines

� Using a degree (N-1) curve with N points gets 

expensive and unstable with increasing N

� No local control, since each basis function is 

nonzero in [0,1]nonzero in [0,1]

� Possible solution: piecewise curves

� Formed from degree 3 Bézier curves

� How to join them to obtain Ck continuity?

Andrew Nealen, Rutgers, 2009 10/21/2009 17



Bézier splines
Continuity

M
o

re
  

co
n

st
ra

in
ts

Andrew Nealen, Rutgers, 2009 10/21/2009 18

Still free to moveStill free to move

M
o

re
  

co
n

st
ra

in
ts



de Boor algorithm

� For cubic curves

� Split each edge in de Boor polygon into 1/3’s

� Connect across corners, and split in half

� Has local control

� Moving bi only effects nearby Bézier curves
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B-splines

� Piecewise polynomial of degree d with Cd-1

continuity, specified by n+1 control points 

{bk | k ∈ 0,…,n} and a knot vector 

{tk | k ∈ 0,…,n+d} that contains n+d+1 values{tk | k ∈ 0,…,n+d} that contains n+d+1 values

� For now, knot vector is {0,1,2,3,4,5,6}
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� Recursive definition of B-spline basis functions

B-splines
Definition
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� is constructed from piecewise 

polynomials of degree d over t

B-splines
Construction
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B-splines

� Quadratic B-spline basis
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� If tj is a simple knot such that tj-1 ≠ tj ≠ tj+1 then

is Cd-1 continuous

� For a knot s=tj+1=...=tj+µ of multiplicity µ the B-

Splines       of degree d are Cd-µ continuous

B-splines
Knot multiplicity
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� B-splines contain the Bernstein polynomials

as a special case of knot multiplicity 

B-splines
Bernstein polynomials
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Rational B-spline

� Like having [x, y, z, w] with varying weights

� Useful for building exact conics (circle, etc.)

� Projective invariance
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B-spline surfaces

� Tensor product surfaces

� Also works for Bézier curves/splines

(Bézier patches)
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