CS 428: Fall 2009
Introduction to

Computer Graphics

Perspective transformation
some more geometric intuition

Andrew Nealen, Rutgers, 2009 9/30/2009

Perspective transformation

Geometric intuition

» Shear other axes along w-axis 1 00
" For single vanishing point in 2D: (1) Lo
. . . — 0 1
shearing the x-axis a w.r.t. w-axis | x, |

w

Perspective transformation

Geometric intuition

» Shear other axes along w-axis 1 00
" For single vanishing point in 2D: (1) Lo
. . . — 0 1
shearing the x-axis a w.r.t. w-axis | x, |

Perspective transformation

= Shear other axes along w-axis
" For single vanishing point in 2D:

Geometric intuition

1 00
0 10
1
. . . — 0 1
shearing the x-axis a w.r.t. w-axis | x, |
w
w=1

—
—
—
—
—
—
-—

After w divide, points are
no longer equidistant

X

Perspective transformation

Geometric intuition

= Geometric construction of A’B’C’D’ using this

insight Ny
Projektions-
Gerade x=0 L
Al B
//
A
Eye point (-4, 0, 0) 5
= at infinity
-
//
D C’
¥ >
Augpunkt (-4,0)

Andrew Nealen, Rutgers, 2009 9/30/2009 5

Perspective transformation

Geometric intuition

= Shear = translating points ABCD in w-direction
= ABCD projects (orthogonally along w) to

w

same polygon after =-

perspective //X == =1

transformation y X
(before w-divide!) b

= ABCD will no longer A
liein w=1 plane Eye point (-4, 0, 0)

= at infinity B’

= w-divide by central
projection A'B’C’'D’

Andrew Nealen, Rutgers, 2009 9/30/2009 6

Geometric construction

AY

Projektions-

\ V

\A'
N

\ P — P ~

Eye point (-40, 0)
= at infinit ps : N

1\
\
UJ\\‘\\\

e
\

N

\

n-\\\

// 7 ,
4-r N~
4_/
f% -

Augpunkt (-4,0)

Andrew Nealen, Rutgers, 2009 9/30/2009 7

Geometric construction

AY
Projektions-
Gerade x=0 L

Eye point (-4, 0, 0)
= at infinity

Augpunkt (-4,0)

Andrew Nealen, Rutgers, 2009 9/30/2009 8

CS 428: Fall 2009
Introduction to

Computer Graphics

Polygonal meshes

Andrew Nealen, Rutgers, 2009 9/30/2009

Topic overview

Image formation and OpenGL
Transformations and viewing

Polygons and polygon meshes

= 3D model/mesh representations

= Piecewise linear shape approximations
= lllumination and polygon shading

Modeling and animation
Rendering

Polygon meshes

= Some objects are flat
= Some objects are smooth < approximate!

= Use many planar triangles/quadrilaterals to
approximate the underlying smooth surface

Ea-

wb
¢ © cr(m.ﬂw

(exact) C“PP“’H) (ﬂ-ppmv

shape

Andrew Nealen, Rutgers, 2009

Approximating shapes
with polygons

polygon mesh

(exact)

(approximated)

9/30/2009 12

Polygon meshes

= Polygon mesh

= Vertices ° o geometry (positions)

" Edges [Ty topology

(connectivity)
= Faces S@

= All three are redundant, but can lead to more efficient
(neighborhood) computation

Representation

= Often just stored in a file
= List of vertices (x4, Y4, 24) - (X, ¥, Z,,) followed by
= List of polygons = ordered list of indices (1,2,3) ...

/ Vertices Polygons

1(-1, 1, 1) {1,2,3,4}

2 (-1,-1, 1) {8,7,6,5}

3(1,-1, 1) {4,3,7, 8}

4 (1,1, 1) {5,1,4,8}

5 (-1, 1,-1) {5,6,2,1}

6 (-1,-1,-1) {2,6,7,3}
7 7 (1,-1,-1)
8 (1, 1,-1)

—

Andrew Nealen, Rutgers, 2009

9/30/2009

= Indexed face set

Representation

= Example: octahedron

dcr"‘h'ciu_
(IJ o, o)
(-f; D"a.)
(e, 1, o)
(e, -1, o)
(0}:} 1)

(e, -1)

AL v o

\ L

Andrew Nealen, Rutgers, 2009 9/30/2009

15

Connectivity

= Vertices and polygons are sufficient for
rendering

" When adjacency information is needed
= Edges: 2 vertices

= 1 or 2 polygons, assuming no T-joins L] 4

= Vertices store list of adjacent vertices, edges or
polygons

= Polygons store list of edges
= Sophisticated data structures exist (CS 523)

Polygon mesh example

Illllallﬂnm“

T e e

-
-

2903 vertices
3263 polygons

Polygon normals

" Triangles have a
. P
single normal vector 2
P, .

2

ne (P) <(p,-)
= More than 3 points

produces a normal 1
at each vertex P
= |f all points in a plane \Z____ﬂ__j/

all normals are equal

Polygon normals

" |f the polygon is sampled from a surface, we
can compute normals analytically

= Disance field f(x,y,z) =0 ... a map from R3 > R

» The gradient Vf is the VE
(un-normalized) normal
at (x,y,2)

= But we can find the
normals at the
vertices here

" How?

Vertex normals

" Average the normals of adjacent polygons
" For an arbitrary vertex

= Compute the cross product between each two

adjacent outgoing edges (= each adj. polygon)
= Sum the resulting vectors into a single vector
= Normalize this vector

= More sophisticated |
methods exist (CS 523) °© Py

Polygon shading

=" For now (more details later): normals are used
for shading (= computing brightness values)

= One polygon

N

(o' nevr mal /{Jﬂ[‘[jdk Ona normel /U'ﬁr‘ﬂ'ﬁ)f

W

7
)
(all vertex o el

2 %_u"")

Polygon shading

=" For now (more details later): normals are used
for shading (= computing brightness values)

= Multiple polygons

&y 57

'P‘cg'('ee! J‘\aaﬂh N sha "Q‘M |

I,.:hqaﬂz.e P‘°[7§’M are sha dek

i quFN"""“
eack polygon) L‘]"““yﬁw ot caler

A

Smooth shading

* Find average normal of W

adjacent polygons K/

= How to compute?

~ Z '3,')
ﬂa.u; | e

plyg o
(

V\!’} [A& (l. r 2

Smooth shading

" Find average normal of W
adjacent polygons K
" Do we need a list "
of adjacent polygons? [t e
= Not if we want to V?ﬁf)j = o
compute all bees &
avg. normals ks fin o &
* This can be performed (hosy)y += P
from an indexed face set | yuw;
nocmelize (Mayy)

on reading the file

Mesh rendering styles

Flat (faceted) shading Smooth (Gouraud) shading

Sphere

T
)
X

Polygons and Flat Smooth
wireframe

Vertex normals and
smooth shading

Creases lost Creases retained

Normal stored in vertex Normals stored in polygon
(per vertex)

Polygon/surface orientation

= Order of vertices specifies a polygon
" Backwards and forwards = same polygon

PR IRn.

P P. 3:5(3, A1) (2,03) (1, 32)5

* But the normal direction flips /ﬁf/}\
1 T’l

ny,

Polygon/surface orientation

= Use right-hand rule to determine
normal direction

3 R
= Counter clockwise: [4)\ //l[/\
normal comes out N | Tl
! 2 0
b

of “slide”

= Convention: list vertices in CCW order

= Mesh should be consistently oriented

= All point out! /}*\q\ A;*\E;F
_ ne
\{EJ’

Polygon transformation

" Transform points

(G

p...
/ %«tw

%,

®= Draw polygon using these

= Affine transformations map lines to lines
(planes to planes, etc.)

