
CS 428: Fall 2009

Introduction to

Computer GraphicsComputer Graphics

Perspective transformation

some more geometric intuition

9/30/2009 1Andrew Nealen, Rutgers, 2009

Perspective transformation
Geometric intuition

� Shear other axes along w-axis

� For single vanishing point in 2D:

shearing the x-axis a w.r.t. w-axis 



















10
1

010

001

0
x

w

Andrew Nealen, Rutgers, 2009 9/30/2009 2

w = 1

x

w

Perspective transformation
Geometric intuition

� Shear other axes along w-axis

� For single vanishing point in 2D:

shearing the x-axis a w.r.t. w-axis 



















10
1

010

001

0
x

w

Andrew Nealen, Rutgers, 2009 9/30/2009 3

w = 1

x

w

Perspective transformation
Geometric intuition

� Shear other axes along w-axis

� For single vanishing point in 2D:

shearing the x-axis a w.r.t. w-axis 



















10
1

010

001

0
x

w

Andrew Nealen, Rutgers, 2009 9/30/2009 4

w = 1

x

w

After w divide, points are

no longer equidistant

Perspective transformation
Geometric intuition

� Geometric construction of A’B’C’D’ using this

insight

A´

B´

C´D´

Eye point (-4, 0, 0)
= at infinity

9/30/2009 5Andrew Nealen, Rutgers, 2009

Perspective transformation
Geometric intuition

� Shear = translating points ABCD in w-direction

� ABCD projects (orthogonally along w) to

same polygon after

perspective w = 1

w

perspective

transformation

(before w-divide!)

� ABCD will no longer

lie in w=1 plane

� w-divide by central

projection A’B’C’D’

A´

B´

C´D´

Eye point (-4, 0, 0)
= at infinity

x

9/30/2009 6Andrew Nealen, Rutgers, 2009

Geometric construction

A´

Eye point (-4, 0, 0)
B´

C´D´

Eye point (-4, 0, 0)
= at infinity

9/30/2009 7Andrew Nealen, Rutgers, 2009

Geometric construction

A´

Eye point (-4, 0, 0)
B´

C´D´

Eye point (-4, 0, 0)
= at infinity

9/30/2009 8Andrew Nealen, Rutgers, 2009

CS 428: Fall 2009

Introduction to

Computer GraphicsComputer Graphics

Polygonal meshes

9/30/2009 9Andrew Nealen, Rutgers, 2009

Topic overview

� Image formation and OpenGL

� Transformations and viewing

� Polygons and polygon meshes

� 3D model/mesh representations� 3D model/mesh representations

� Piecewise linear shape approximations

� Illumination and polygon shading

� Modeling and animation

� Rendering

Andrew Nealen, Rutgers, 2009 9/30/2009 10

Polygon meshes

� Some objects are flat

� Some objects are smooth ← approximate!

� Use many planar triangles/quadrilaterals to

approximate the underlying smooth surfaceapproximate the underlying smooth surface

Andrew Nealen, Rutgers, 2009 9/30/2009 11

Approximating shapes

with polygons

shape polygon mesh

(exact)(exact)

(approximated)

…

9/30/2009 12Andrew Nealen, Rutgers, 2009

Polygon meshes

� Polygon mesh

� Vertices geometry (positions)

� Edges topology

(connectivity)

� Faces

� All three are redundant, but can lead to more efficient

(neighborhood) computation

Andrew Nealen, Rutgers, 2009 9/30/2009 13

Representation

� Often just stored in a file

� List of vertices (x1, y1, z1) … (xn, yn, zn) followed by

� List of polygons = ordered list of indices (1,2,3) …

Vertices Polygons
yy

Andrew Nealen, Rutgers, 2009 9/30/2009 14

Vertices
1 (-1, 1, 1)

2 (-1, -1, 1)

3 (1, -1, 1)

4 (1, 1, 1)

5 (-1, 1, -1)

6 (-1, -1, -1)

7 (1, -1, -1)

8 (1, 1, -1)

Polygons
{ 1, 2, 3, 4 }

{ 8, 7, 6, 5 }

{ 4, 3, 7, 8 }

{ 5, 1, 4, 8 }

{ 5, 6, 2, 1 }

{ 2, 6, 7, 3 }xx

yy

zz

= Indexed face set

Representation

� Example: octahedron

Andrew Nealen, Rutgers, 2009 9/30/2009 15

Connectivity

� Vertices and polygons are sufficient for

rendering

� When adjacency information is needed

� Edges: 2 vertices� Edges: 2 vertices

� 1 or 2 polygons, assuming no T-joins

� Vertices store list of adjacent vertices, edges or

polygons

� Polygons store list of edges

� Sophisticated data structures exist (CS 523)

Andrew Nealen, Rutgers, 2009 9/30/2009 16

Polygon mesh example

2903 vertices 2903 vertices

3263 polygons

9/30/2009 17Andrew Nealen, Rutgers, 2009

Polygon normals

� Triangles have a

single normal vector

� More than 3 points

produces a normal

at each vertex

� If all points in a plane

all normals are equal

Andrew Nealen, Rutgers, 2009 9/30/2009 18

Polygon normals

� If the polygon is sampled from a surface, we

can compute normals analytically

� Disance field f(x,y,z) = 0 … a map from R3 → R

� The gradient ∇f is the � The gradient ∇f is the

(un-normalized) normal

at (x,y,z)

� But we can find the

normals at the

vertices here

� How?

Andrew Nealen, Rutgers, 2009 9/30/2009 19

Vertex normals

� Average the normals of adjacent polygons

� For an arbitrary vertex

� Compute the cross product between each two

adjacent outgoing edges (= each adj. polygon)adjacent outgoing edges (= each adj. polygon)

� Sum the resulting vectors into a single vector

� Normalize this vector

� More sophisticated

methods exist (CS 523)

Andrew Nealen, Rutgers, 2009 9/30/2009 20

Polygon shading

� For now (more details later): normals are used

for shading (= computing brightness values)

� One polygon

Andrew Nealen, Rutgers, 2009 9/30/2009 21

Polygon shading

� For now (more details later): normals are used

for shading (= computing brightness values)

� Multiple polygons

Andrew Nealen, Rutgers, 2009 9/30/2009 22

Smooth shading

� Find average normal of

adjacent polygons

� How to compute?� How to compute?

Andrew Nealen, Rutgers, 2009 9/30/2009 23

Smooth shading

� Find average normal of

adjacent polygons

� Do we need a list

of adjacent polygons?of adjacent polygons?

� Not if we want to

compute all

avg. normals

� This can be performed

from an indexed face set

on reading the file
Andrew Nealen, Rutgers, 2009 9/30/2009 24

Mesh rendering styles

Flat (faceted) shading Smooth (Gouraud) shading

9/30/2009 25Andrew Nealen, Rutgers, 2009

Sphere

FlatPolygons and

wireframe
Smooth

9/30/2009 26Andrew Nealen, Rutgers, 2009

Vertex normals and

smooth shading
Creases lost Creases retained

Normal stored in vertex Normals stored in polygon

(per vertex)

9/30/2009 27Andrew Nealen, Rutgers, 2009

Polygon/surface orientation

� Order of vertices specifies a polygon

� Backwards and forwards = same polygon

� But the normal direction flips

Andrew Nealen, Rutgers, 2009 9/30/2009 28

Polygon/surface orientation

� Use right-hand rule to determine

normal direction

� Counter clockwise:

normal comes outnormal comes out

of “slide”

� Convention: list vertices in CCW order

� Mesh should be consistently oriented

� All point out!

Andrew Nealen, Rutgers, 2009 9/30/2009 29

Polygon transformation

� Transform points

� Draw polygon using these

� Affine transformations map lines to lines

(planes to planes, etc.)

Andrew Nealen, Rutgers, 2009 9/30/2009 30

