CS 428: Fall 2009 Introduction to Computer Graphics

Viewing and projective transformations

Modeling and viewing transformations

Modeling and viewing transformations

- OpenGL order
glMatrixMode (GL_MODELVIEW)
glLoadIdentity()
glMultMatrix (V)
glMultMatrix (M)
draw () \longleftarrow Transformation is VM
- In OpenGL, these transformations are place on the modelview matrix stack
- The projection matrix stack is only for storing the projection matrix resulting from glOrtho (), glFrustum(), or gluProjection ()

3D viewing

- The eye has a view cone
- Approximated in CG by a "rectangular cone" = square frustum
- Good for rectangular viewing window

3D viewing process

Truncated view volumes

- Orthographic

Truncated view volumes

- Perspective

$$
g_{g^{\prime} \mid \text { Frustum e }(l, r, b, t, n . f)}^{\text {on near planective }(\text { for }-y, \text { aspect, } n, F)}
$$

Where's the film?

- A rectangle with known aspect ratio on the infinite film plane
- "Where" doesn't matter, as long as the film plane is parallel to far and near
- Will be scaled to viewport coordinates

OpenGL projection matrices

- How is this implemented in OpenGL?
- The following matrices assume
- Camera center at origin
- Looking down negative z-axis
- y-axis is "up"
- near, far > 0
- right = -left = 1
- top $=$-bottom =1

- See glortho () etc. manpages for general case

OpenGL projection matrices

- Orthographic projection

$$
\text { Portho }=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \frac{2}{n-f} & \frac{n+f}{n-f} \\
& & 1
\end{array}\right]
$$

$$
\text { Portho }\left[\begin{array}{c}
x \\
y \\
-n \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-1 \\
1
\end{array}\right] \quad \text { Porte } \cdot\left[\begin{array}{c}
x \\
y \\
-f \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 \\
1
\end{array}\right]
$$

maps or tho view volume to $x, y, z \in[-1,1]$ (cube (a) origin) where near $\rightarrow z=-1$

$$
\text { for } \rightarrow 2=+1
$$

normalized device coordinates

OpenGL projection matrices

$$
\begin{aligned}
& \text { - Perspective projection } P_{\text {perse }}=\left[\begin{array}{lll}
\frac{n}{r} & & \\
& \frac{n}{t} & \\
& \frac{n+f}{n-f} & \frac{2 n f}{n-f} \\
& -1 &
\end{array}\right] \\
& P_{\text {perse }} \cdot\left[\begin{array}{c}
x \\
y \\
-n \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{n}{r}\right) x \\
\left(\frac{n}{t}\right) y \\
-n \\
n
\end{array}\right] \stackrel{+w}{\longrightarrow}\left[\begin{array}{c}
x / r \\
y / t \\
-1 \\
1
\end{array}\right] \quad P_{\text {perse }} \cdot\left[\begin{array}{c}
x \\
y \\
-f \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{n}{r}\right) x \\
\left(\frac{n}{t}\right) y \\
f \\
f
\end{array}\right] \xrightarrow{\dot{\prime}}\left[\begin{array}{c}
\frac{n}{f} \cdot \frac{x}{r} \\
\frac{n}{f} \cdot \frac{y}{t} \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

maps frustum to cube @ origin $[-1,1]^{3}$

Perspective projections

- Perspective projections are not affine transformations
- Relative lengths are no longer invariant
- Distant objects (of same size) are made smaller than near ones (= foreshortening)
- Given a projected point $P=(x, y)^{t}$ and eye position $A=\left(-x_{0}, 0\right)^{\mathrm{t}}$, then by the theorem of intersecting lines the image B is $\left(0, y_{0}\right)^{t}$

$$
\frac{y_{0}}{y}=\frac{x_{0}}{x+x_{0}}
$$

Perspective projections

- In general, the mapping is

$$
\binom{x}{y} \mapsto\binom{0}{\frac{y \cdot x_{0}}{x_{0}+x}}
$$

- Resulting in the homogeneous 3×3-Matrix
- 2D-Geometry!

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & x_{0} & 0 \\
1 & 0 & x_{0}
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{x_{0}} & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
0 \\
x_{0} \cdot y \\
x+x_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{x_{0}}{x+x_{0}} \cdot y \\
1
\end{array}\right]}
\end{aligned}
$$

Perspective projections

- The projection is composed of two transformations
- The perspective transformation
- The subsequent parallel projection

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{x_{0}} & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{x_{0}} & 0 & 1
\end{array}\right]} \\
& \begin{array}{l}
\text { Perspective } \\
\text { projection }
\end{array} \begin{array}{ll}
\text { Parallel- } \\
\text { projection }
\end{array}
\end{aligned} \begin{aligned}
& \text { Perspective } \\
& \text { transformation }
\end{aligned}
$$

Perspective transformations

- Properties of perspective transformations of the form

$$
T_{p} \cdot\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{x_{0}} & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
\frac{x}{x_{0}}+w
\end{array}\right]
$$

Field of view and viewing line

- All points on the affine Line $x=-x_{0}$ are mapped to infinite points
- Only points on one side of this line are transformed
- These points are in the field of view, and the line $x=-x_{0}$ is the viewing line

Fixed points and lines

- Points on the projection line $x=0$ (= y-axis) together with the infinite point $[0,1,0]$ are fixed points of this transformation (the y-axis is invariant)
- Lines parallel to the y-axis remain parallel

Fixed points and lines

- Points on the projection line $x=0$ (= y-axis) together with the infinite point $[0,1,0$] are fixed points of this transformation (the y-axis is invariant)
- Lines parallel to the y-axis remain parallel

$$
T_{p} \cdot\left[\begin{array}{c}
x_{o b j} \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{x_{0}} & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x_{o b j} \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{o b j} \\
y \\
\frac{x_{o b j}}{x_{0}}+1
\end{array}\right]=\left[\begin{array}{c}
x_{o b j} \\
y \\
\frac{x_{o b j}+x_{0}}{x_{0}}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{o b j} \cdot x_{0}}{x_{o b j}+x_{0}} \\
\frac{y \cdot x_{0}}{x_{o b j}+x_{0}} \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{i m a g e} \\
y \cdot a_{\text {factor }} \\
1
\end{array}\right]
$$

- Lines are transformed to lines

Parallel lines

- The affine (eye) point $\left[-x_{0}, 0,1\right]^{\mathrm{t}}$ is transformed to the infinite point $\left[-x_{0}, 0,0\right]^{\mathrm{t}}=[-1,0,0]^{\mathrm{t}}$
- The points on the affine y-axis are invariant

Parallel lines

- Lines are mapped to lines
- A line through eye point $\left[-x_{0}, 0,1\right]^{\mathrm{t}}$, which intersects the y axis at $\left[0, y_{0}, 1\right]^{\mathrm{t}}$ is mapped to a line parallel to the x -axis passing through $\left[0, y_{0}, 1\right]^{\mathrm{t}}$

Vanishing line

- The point $[\mathrm{x}, \mathrm{y}, 0]^{\mathrm{t}}$ is mapped to $\left[\mathrm{x}_{0}, \mathrm{x}_{0} \cdot \mathrm{y} / \mathrm{x}, 1\right]^{\mathrm{t}}$
- Note that $[x, y, 0]^{t}$ is a direction and $\left[x_{0}, x_{0} \cdot y / x, 1\right]^{t}$ is a point
- The mappings of all lines parallel to the affine line with direction $[\mathrm{x}, \mathrm{y}, 0]^{\mathrm{t}}$ contain the point $\left[\mathrm{x}_{0}, \mathrm{x}_{0} \mathrm{y} / \mathrm{x}, 1\right]^{\mathrm{t}}$, meaning they all intersect in this point
- The union of the mappings of all lines with direction $[x, y, 0]^{t}$ lie on the line $x=x_{0}(=$ vanishing line)

Vanishing line

- The point $[\mathrm{x}, \mathrm{y}, 0]^{\mathrm{t}}$ is mapped to $\left[\mathrm{x}_{0}, \mathrm{x}_{0} \cdot \mathrm{y} / \mathrm{x}, 1\right]^{\mathrm{t}}$
- Note that $[x, y, 0]^{t}$ is a direction and $\left[x_{0}, x_{0} \cdot y / x, 1\right]^{t}$ is a point

Vanishing point

- The point $[x, y, 0]^{t}$ is mapped to $\left[x_{0}, x_{0} \cdot y / x, 1\right]^{t}$
- Note that $[x, y, 0]^{t}$ is a direction and $\left[x_{0}, x_{0} \cdot y / x, 1\right]^{t}$ is a point
- All lines with direction $[x, 0,0]^{t}$ are mapped to $\left[x_{0}, 0,0\right]^{t}$

Projection line Vanishing line

One, two and three vanishing point perspectives

- General perspective transformation

$$
T_{p} \cdot\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{1}{x_{0}} & \frac{1}{y_{0}} & \frac{1}{z_{0}} & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
\frac{x}{x_{0}}+\frac{x}{y_{0}}+\frac{x}{z_{0}}+w
\end{array}\right]
$$

- The directions of lines parallel to the coordinate axes are mapped to the vanishing points $\left[\mathrm{x}_{0}, 0,0,0\right]^{\mathrm{t}},\left[0, \mathrm{y}_{0}, 0,0\right]^{\mathrm{t}}$, $\left[0,0, z_{n}, 0\right]^{t}$

In OpenGL code

- For example, in reshape (. . .) glViewport(0, 0, width, height) glMatrixMode (GL_PROJECTION) glLoadIdentity()
gluPerspective (. . .) \longleftarrow Perspective transformation glMatrixMode (GL_MODELVIEW)
- In render ()
gluLookAt (...) \longleftarrow Viewing transformation glTranslatef(...) Modeling transformations
glRotatef (...) draw_scene()

Geometric construction

