CS 428: Fall 2009 Introduction to Computer Graphics

Geometric Transformations

9/14/2009

Topic overview

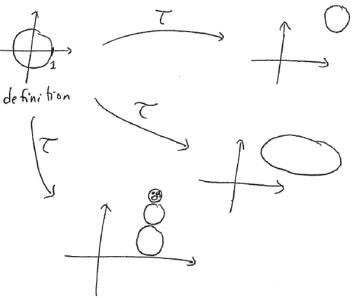
- Image formation and OpenGL (last week)
 - Modeling the image formation process
 - OpenGL primitives, OpenGL state machine
- Transformations and viewing
- Polygons and polygon meshes
 - Programmable pipelines
- Modeling and animation
- Rendering

Topic overview

- Image formation and OpenGL
- Transformations and viewing (next weeks)
 - Linear algebra review, Homogeneous coordinates
 - Geometric + projective transformations
 - Viewing, Viewports, Clipping
- Polygons and polygon meshes
 - Programmable pipelines
- Modeling and animation
- Rendering

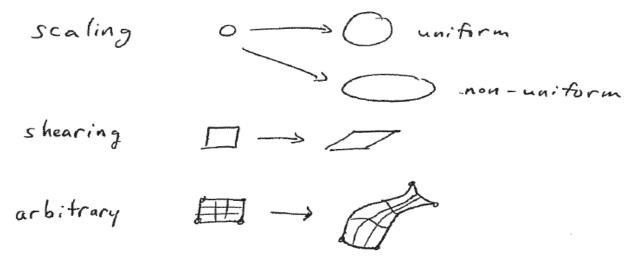
Transformations in CG

- Specify placement of objects in the world
 - relative to the configuration in which they are defined
- Allow for reuse of objects in different places, sizes
- Specify the camera position
- Specify the camera model (projection)



Transformations in CG

- The "where" is specified by translations and rotations (= rigid body motions)
- Shape changes include



- For now we will only use linear deformations
 - Linear algebra!

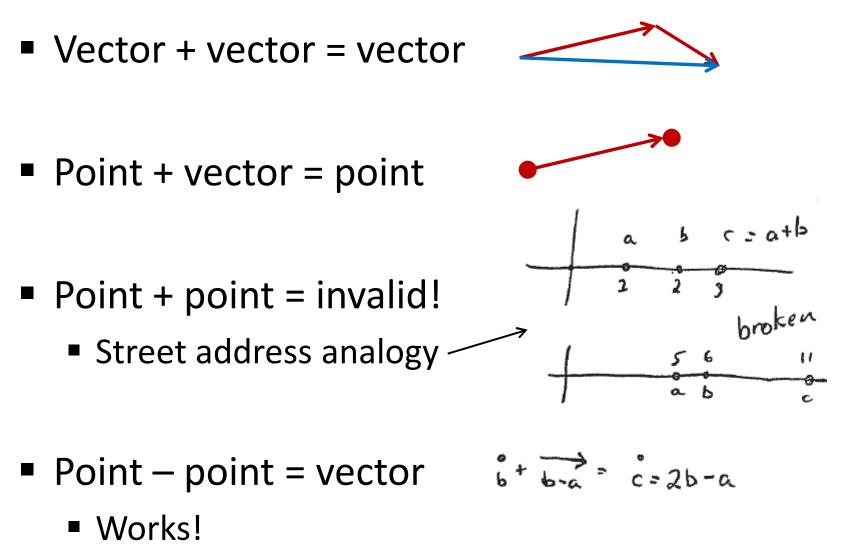
Andrew Nealen, Rutgers, 2009

9/14/2009

Representations in CG

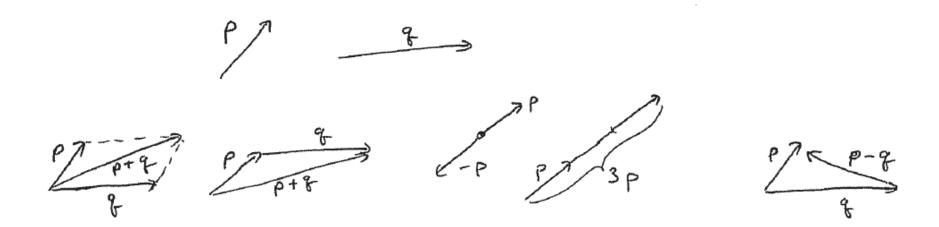
- Computations should not depend on coordinate system (such as midpoint/origin)
- Need careful accounting of points and vectors
 Both ∈ ℜ³ (3 tuples of floating point values)
- Vectors
 - Displacements, velocities, directions, trajectories, surface normals, etc.
- Points
 - Locations!

Vector/point operations



9/14/2009

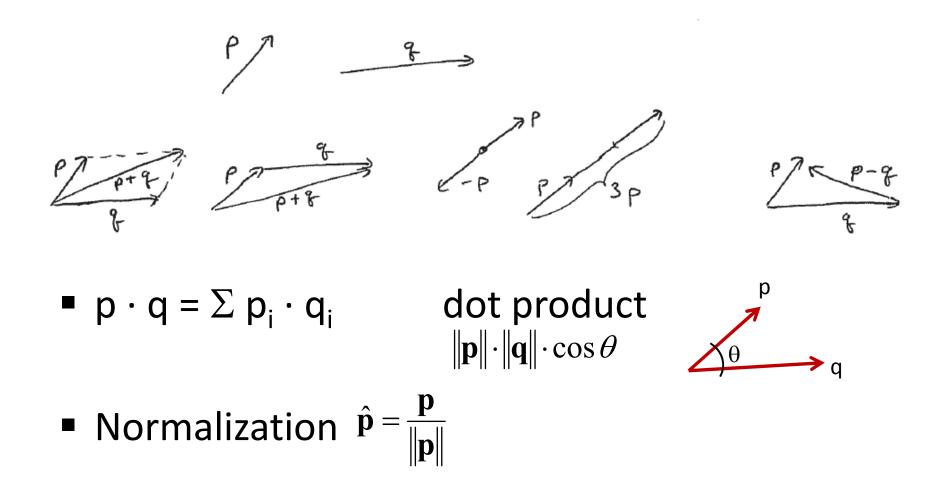
Vector review



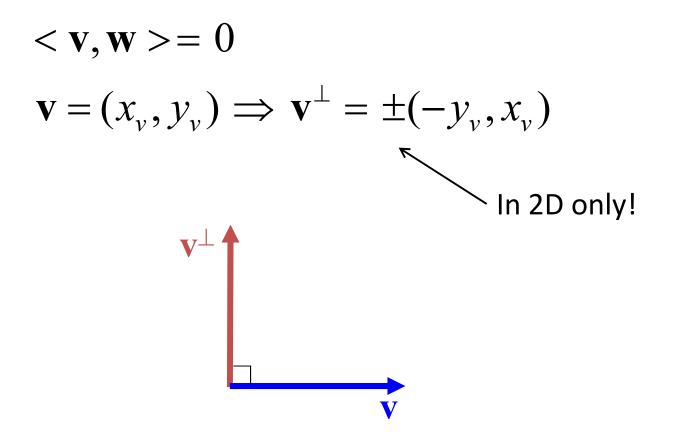
- $[p + q]_i = p_i + q_i$
- $[s p]_i = s \cdot p_i$
- || p || = sqrt[(p_i)²]

addition scalar multiplication length

Vector review



Perpendicular vectors



Linear combination + Basis

Linear combination

• $\lambda_1 \cdot \mathbf{v}_1 + \lambda_2 \cdot \mathbf{v}_2 + \dots + \lambda_n \cdot \mathbf{v}_n$ with $\lambda_i \in \mathbf{R}$

Linear independence of vectors v₁, ..., v_n

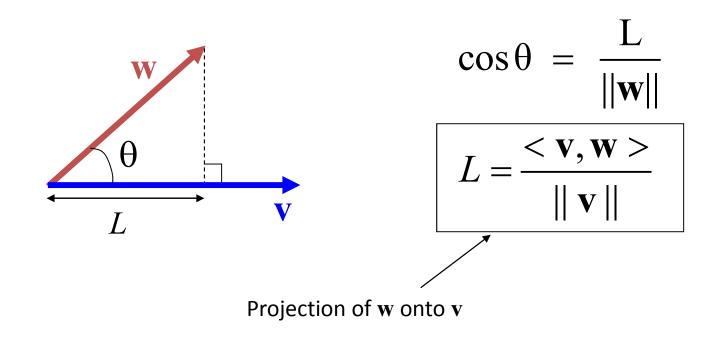
• $\lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n = 0$ only when $\lambda_i = ... = \lambda_n = 0$

- Basis of n-dimensions is a set of n linearly independent vectors
 - Every vector in Rⁿ has a unique set of λ's to represent it → Cartesian coordinates

Inner (dot) product

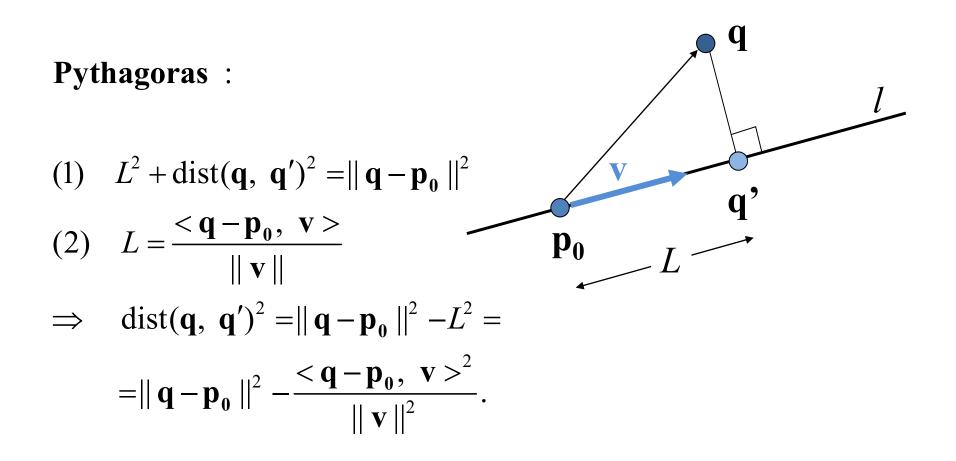
Defined for vectors:

 $\langle \mathbf{v}, \mathbf{w} \rangle = ||\mathbf{v}|| \cdot ||\mathbf{w}|| \cdot \cos \theta$



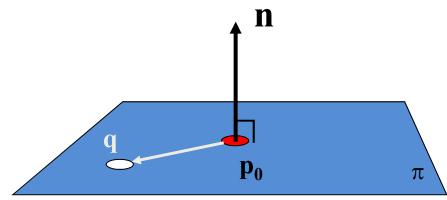
9/14/2009

Distance between point and line



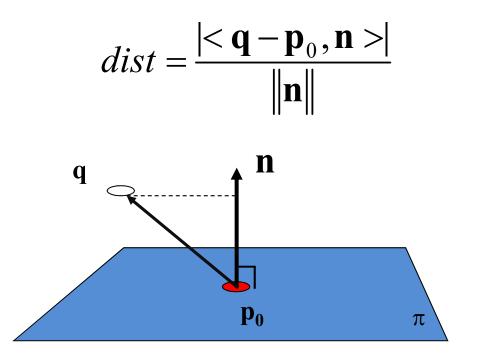
Representation of a plane in 3D space

- A plane π is defined by a normal n and one point in the plane p_0 .
- A point $q \in plane \iff \langle q p_0, n \rangle = 0$
- The normal n is perpendicular to all vectors in the plane



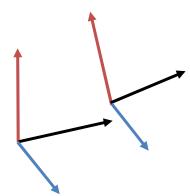
Distance between point and plane

- Geometric way:
 - Project (q p₀) onto n!



Coordinates

- Connect drawing plane/space with R² or R³
- Coordinate origin and axes are problem specific
 - Example: orthogonal coordinates in the lower corner of this room
- Affine spaces have
 - No fixed origin
 - No fixed axes

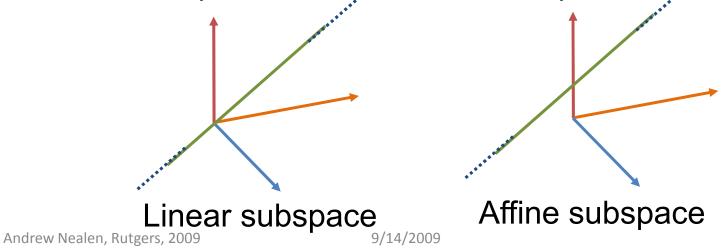


(which is not the case in linear spaces)

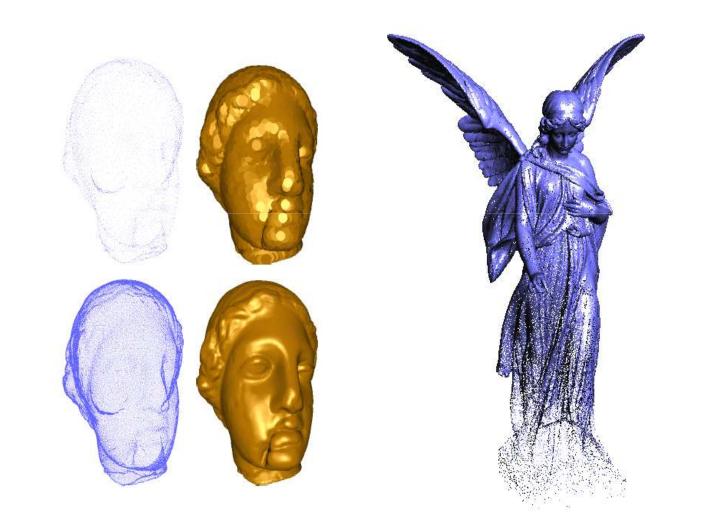
Coordinates

Affine space

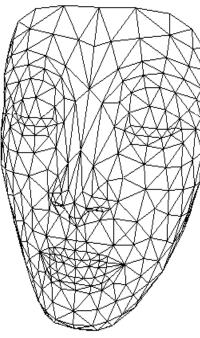
- "An affine space is a vector space that's forgotten its origin" – John Baez
 - In R³, the origin, lines and planes through the origin and the whole space are linear
 - points, lines and planes in general as well as the whole space are the affine subspaces.



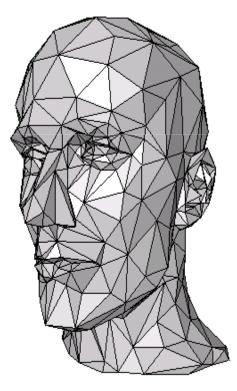
Points



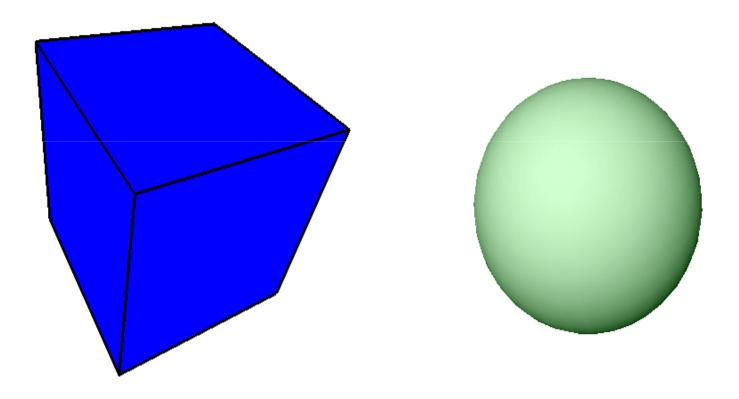
Lines



Triangles

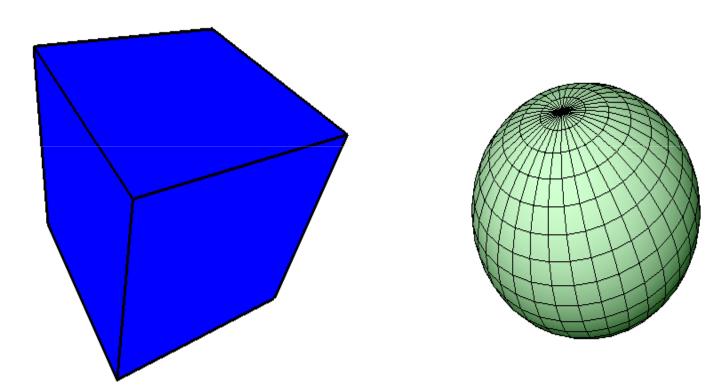


Shapes



9/14/2009

Shapes ... are tessellated



Positioning

Absolute coordinates?

Positioning

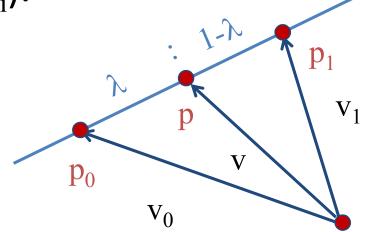
- Transformation + relative coordinates
 - Translation
 - Rotation
 - Scaling
 - Shearing
- Affine maps / Transformations!

Affine combinations

• The set

$$\left\{ v \in V \mid v = \sum_{i=0}^{n} \lambda_{i} \cdot v_{i}, \quad \sum_{i=0}^{n} \lambda_{i} = 1 \right\}$$

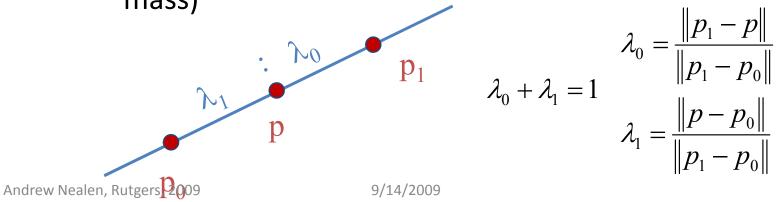
is an affine combination of vectors \mathbf{v}_i (or of points \mathbf{p}_i).



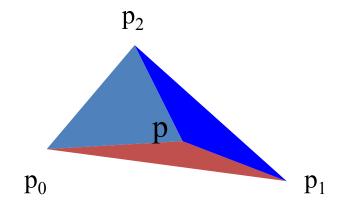
9/14/2009

Barycentric coordinates

- Given and affine space A with coordinate
- system $\mathbf{B} = \{\mathbf{p}_0, \dots, \mathbf{p}_n\}$ For a point $p = \sum_{i=0}^n \lambda_i \cdot p_1$ with $\sum_{i=0}^n \lambda_i = 1$ the λ_i are known as **barycentric coordinates**
- Physical interpretation:
 - Points \mathbf{p}_i have mass $\lambda_i \rightarrow \mathbf{p}$ ist the centroid (= center of mass)



Barycentric coordinates



$$\begin{split} \lambda_0 &= \frac{A(\Delta(p,p_1,p_2))}{A(\Delta(p_0,p_1,p_2))} \\ \lambda_1 &= \frac{A(\Delta(p,p_0,p_2))}{A(\Delta(p_0,p_1,p_2))} \\ \lambda_2 &= \frac{A(\Delta(p,p_0,p_1))}{A(\Delta(p_0,p_1,p_2))} \end{split}$$

$$p = \lambda_0 \cdot p_0 + \lambda_1 \cdot p_1 + \lambda_2 \cdot p_2$$

$$A(\Delta(p_0, p_1, p_2)) = \frac{1}{2} |(p_1 - p_0) \times (p_2 - p_0)|$$

Andrew Nealen, Rutgers, 2009

9/14/2009

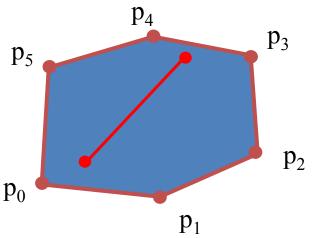
Convex hull

• The set

$$co\{p_0,...,p_n\} = \left\{ p \mid p = \sum_{i=0}^n \lambda_i \cdot p_i, \sum_{i=0}^n \lambda_i = 1, \quad \lambda_i \ge 0, i = 0,...,n \right\}$$

is the convex hull $co\{p_0,...,p_n\}$ of points $p_0,...,p_n$

- The convex hull contains all convex combinations of the points
 - Convex combinations = affine combinations /w barycentric coordinates greater/equal to zero



...as linear maps

- A map $\Phi: \mathbb{R}^n \to \mathbb{R}^m$ is affine
 - when Φ can be represented as $\Phi(\mathbf{v})=A(\mathbf{v})+\mathbf{b}$ where A is a linear map and $\mathbf{b} \in \mathbb{R}^m$
- Affine maps have a linear part (multiplication) and a translation (additive)

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

Linear transformation

9/14/2009

Translation

Affine transformations

- Preserve parallel lines
 - lines \rightarrow lines, planes \rightarrow planes
- Might not preserve length and angles
 - But do preserve relative length along lines
- If they do preserve length and angles then the transformation is an isometry

Affine = linear + translation

...as linear maps

- Leads to the use of projective geometry
- 2D points and vectors represented as
 (x, y, w) → homogeneous coordinates

w = 1 point

w = 0 vector

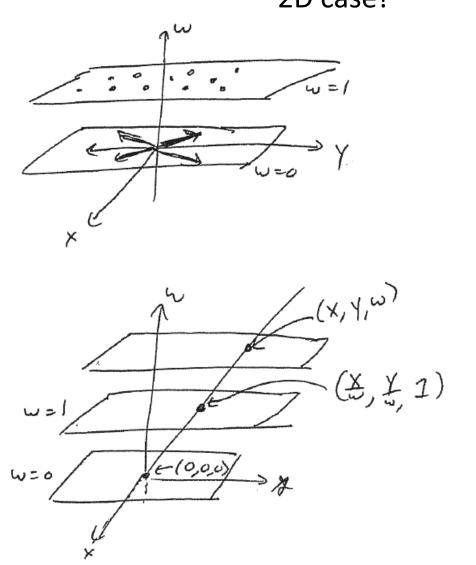
- Point (0, 0, 0) not allowed, so domain
 R³ {(0, 0, 0)}
- If $w \in (0,1]$ then $(x, y, w) \rightarrow (x/w, y/w, 1)$

What is w ?

2D case!

- A kind of a **type**
- Points + "points at infinity"
 - Points at infinity are not affected by translation
- Infinite # of points correspond to (x, y, 1)
 → {(tx, ty, t) | t ≠ 0}
 - Line through origin
 {origin}

Andrew Nealen, Rutgers, 2009



Homogeneous coordinates

Works nicely for points and vectors

$$\begin{pmatrix} P_{x} \\ P_{y} \\ I \end{pmatrix} + \begin{pmatrix} V_{x} \\ V_{y} \\ 0 \end{pmatrix} = \begin{pmatrix} P_{x} + V_{x} \\ P_{y} + V_{y} \\ I \end{pmatrix}$$

$$(point) + (vector) = (point)$$

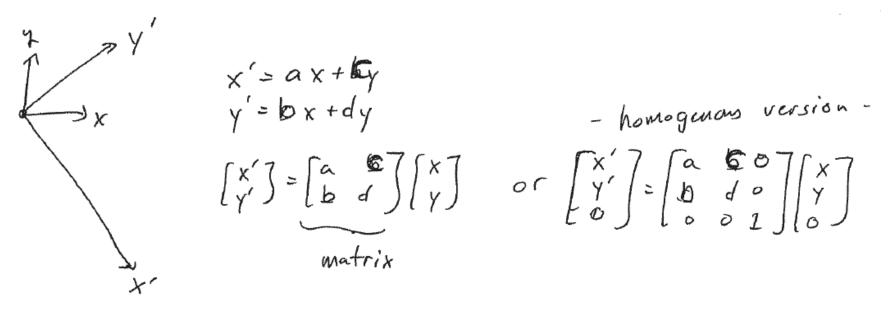
$$\frac{1}{2} \begin{pmatrix} P_{x} \\ P_{y} \\ I \end{pmatrix} + \frac{1}{2} \begin{pmatrix} q_{x} \\ q_{y} \\ I \end{pmatrix} = \begin{pmatrix} P_{x} + q_{x} \\ P_{y} + q_{x} \\ I \end{pmatrix}$$

$$(affine c. of pt) (point)$$

- Adding and scaling works too
- More in "projections", where $w \in [0,1]$

Linear transformation

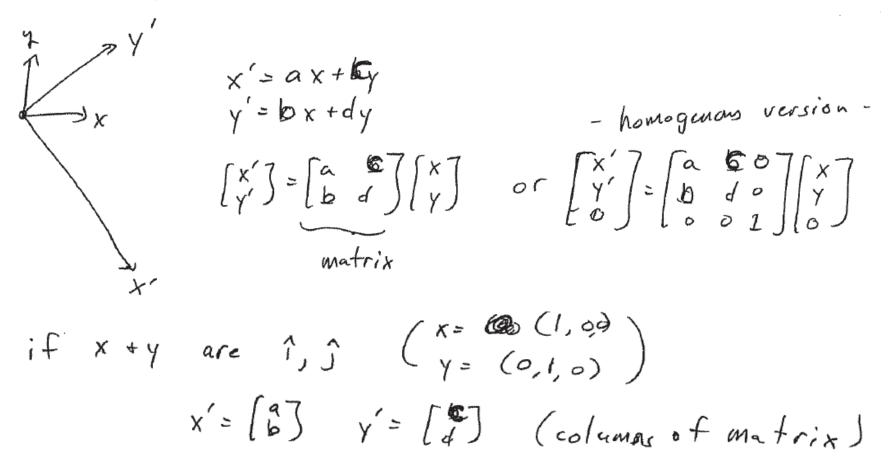
Purely linear transformation



- Origin does not move
- New coordinate axes are lin. comb. of old ones

Linear transformation

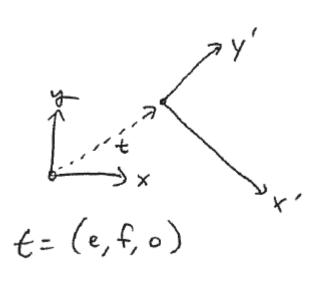
Purely linear transformation



Affine transformation

as a linear transformation + translation in n dimensions

• Origin moves \rightarrow translation



still, for vectors, x'= ax + by y'= bx + dy

but points: $P'_{x} = aP_{x} + cP_{y} + e$ $P'_{y} = bP_{x} + dP_{y} + f$

Affine transformation

as a linear transformation in n+1 dimensions

• Origin moves \rightarrow translation

$$\begin{bmatrix} P_{x}' \\ P_{y}' \\ I \end{bmatrix} = \begin{bmatrix} a & c & e \\ b & d & f \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} P_{x} \\ P_{y} \\ P_{y} \end{bmatrix}$$
 points and vectors!

$$\begin{bmatrix} g \\ 0 \\ V \end{bmatrix} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix} \begin{bmatrix} x \\ Y \\ 0 \end{bmatrix}$$
 vectors

What is so great about this?

- Easy to implement
- Checks for errors in the implementation
 - Can always check the w coordinate to make sure that points and vectors remain unchanged
- Unified representation for linear + translation
 - Can compose many transformations into a single matrix through concatenation

$$\mathbf{M} = \mathbf{M}_{rot} \cdot \mathbf{M}_{scale} \cdot \mathbf{M}_{translate} \cdot \dots$$