CS 428: Fall 2010 Introduction to Computer Graphics

Radiosity

Problems with diffuse lighting

All visible surfaces, white.

A Daylight Experiment, John Ferren

Problems with diffuse lighting

Direct lighting

Global lighting

Cornell box

Goral, Torrance, Greenberg & Battaile Modeling the Interaction of Light Between Diffuse Surfaces SIGGRAPH '84

Simulation

Cornell box

 Calibration and measurement allows comparisons between reality and simulation

Light Measurement Laboratory Cornell University, Program for Computer Graphics Andrew Nealen, Rutgers, 2010

$L(\mathbf{x}',\boldsymbol{\omega}') = E(\mathbf{x}',\boldsymbol{\omega}') + \int \rho_{\mathbf{x}'}(\boldsymbol{\omega},\boldsymbol{\omega}')L(\mathbf{x},\boldsymbol{\omega})G(\mathbf{x},\mathbf{x}')V(\mathbf{x},\mathbf{x}') \, dA$

$L(x',\omega')$ is the radiance from point x' in direction of ω'

Radiance is measured in [W/(m²·sr)] http://en.wikipedia.org/wiki/Radiance

$L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$ $E(x',\omega') \text{ is the emitted radiance: E is greater}$ zero for light sources

 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$ Sum of contributions from all other scene elements to the radiance from point x' in

elements to the radiance from point \boldsymbol{x}^{\prime} direction of $\boldsymbol{\omega}^{\prime}$

 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$ For every x, compute L(x, \omega), the radiance in point x in direction \omega (from x to x')

The contribution is scaled by $\rho_{x'}(\omega, \omega')$ (the BRDF in x')

 $L(\mathbf{x}',\omega') = E(\mathbf{x}',\omega') + \int \rho_{\mathbf{x}'}(\omega,\omega')L(\mathbf{x},\omega)G(\mathbf{x},\mathbf{x}')\mathbf{V}(\mathbf{x},\mathbf{x}') \, d\mathbf{A}$

For every x, determine V(x,x'), the visibility from x relative to x': 1 if there is no occlusion in direction ω , 0 otherwise

 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$ For every x, compute G(x, x'), the geometry term w.r.t. x and x'

G(x,x')?

Which constellation leads to a large exchange of light and why?

The radiosity assumptions

- Surfaces are Lambertian (perfectly diffuse)
 - Reflection occurs in all directions
- The scene is split into small surface elements
- The radiosity B_i, is the total radiosity that comes from element i
- For each element, the radiosity is constant

The radiosity equation

Continuous radiosity equation

Reflection factor

$$B_{x'} = E_{x'} + \rho_{x'} \int G(x,x') V(x,x') B_x$$

Form factor

- G: geometry term
- V: visibility term
- Properties
 - No analytical solution, even for simple scenes

The radiosity equation

Discretize into elements with const. radiosity

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{n} F_{ij} B_{j}$$

Form facto

Reflection factor

Properties

- Iterative solution
- Expensive geometry computations

Andrew Nealen, Rutgers, 2010

The radiosity matrix

$$B_i = E_i + \rho_i \sum_{j=1}^n F_{ij} B_j$$

• n linear equations in n unknowns B_i :

$\left[1-\rho_{\mathrm{l}}F_{\mathrm{l}1}\right]$	$-oldsymbol{ ho}_{ m l}F_{ m l2}$	•••	$-\rho_{l}F_{ln}$	$\begin{bmatrix} B_1 \end{bmatrix}$	ſ	$\begin{bmatrix} E_1 \end{bmatrix}$
$- ho_2 F_{21}$	$1 - \rho_2 F_{22}$				_	E_2
:		•.				:
$\left[-\rho_{n}F_{n}\right]$	•••	•••	$1 - \rho_n F_{nn}$	$\lfloor B_n \rfloor$		$[E_n]$

The solution of this LSE results in B_i, which are independent of viewer position and direction

The radiosity matrix

Iterative solution

The radiosity of an element is replaced by the multiplication of a row with the current solution vector (Gathering)
 (= Gauss-Seidel iteration)

Rendering the radiosity solution

- *B_i* are constant per Element
- How to map to graphics hardware?
 - Average radiosityvalues for each vertex
 - Extrapolate for vertices on the boundary

- F_{ij} = Part of radiance from j that reaches i
- Influenced by:
 - Geometry (area, orientation, position)
 - Visibility (other elements of the scene)
 <u>patch j</u>

F_{ij} = Part of radiance from j that reaches i

Andrew Nealen, Rutgers, 2010

Ray casting

Ai

- Create n rays between 2 elements
 - n typically between 4 und 32
 - Determine visibility
 - Integrate point-point form factors
- Determines form factors between elements

Ai

 Nusselt analog: the form factor is equivalent to the part of the unit circle, which the projection of the element occupies on the unit sphere

spnere $A_iF_{ij} = A_jF_{ji}$ dA_i r = 1 F_{dA_i,A_i}

Hemicube algorithm

- Place hemicube at element center
- Discretize the sides into pixels
- Project and rasterize other elements into cube
- Each hemicube pixel contains precomputed form factor
- Form factor for an element is the sum of contributions
- Visibility by depth buffer

Solving the radiosity equation

 Idea: instead of collecting radiosity from all sources ("gathering"), rather distribute radiosity from brightest emitters ("shooting")

i

- Each patch has remaining radiosity ΔB_i
- Start with $B_i = E_i$ and $\Delta B_i = E_i$
- Distribute ΔB_i to the scene
- Reciprocity:

$$B_{i} = E_{i} + r_{i} \sum_{j=1}^{n} B_{j} F_{ij}, \text{ for all}$$
$$A_{j} F_{ji} = A_{i} F_{ij}$$
$$B_{i} = E_{i} + r_{i} \sum_{j=1}^{n} B_{j} F_{ji} \frac{A_{j}}{A_{i}}$$

 After sending from patch j, the radiosity of elements A_i is increased

$$B_i = B_i + r_i \Delta B_j F_{ji} \frac{A_j}{A_i}, \ i = 1..n$$

The nondisributed radiosity is also increased

$$\Delta B_i = \Delta B_i + r_i \Delta B_j F_{ji} \frac{A_j}{A_i}, \ i = 1..n$$

The set undistributed radiosity of j to zero

$$\Delta B_i = 0$$

Advantages

- Each iteration only requires form factors F_{ij} for element i w.r.t. all other patches
- Good results after few iterations, resulting in significantly less overhead when compared to Gauss-Seidel iterations
- Only requires storing a single column of the form factor matrix

Without ambient term

With ambient term

Discretization into patches

- Image quality depends on the size of patches
 - Smaller patches smaller error
- Patches should be adaptively subdivided where large gradients in radiosity are evident
 - Start with regular grid
 - Subdivide based on quality criterion

Discretization into patches

Photon Mapping Jensen 95

Examples

Lightscape http://www.lightscape.com

Andrew Nealen, Rutgers, 2010

Examples

Mental Ray

Andrew Nealen, Rutgers, 2010