CS 428: Fall 2010 Introduction to Computer Graphics

Radiosity

Problems with diffuse lighting

A Daylight Experiment, John Ferren

Problems with diffuse lighting

Direct lighting

Global lighting

Cornell box

Simulation

set of
il1 uminating lights

Goral, Torrance, Greenberg \& Battaile Modeling the Interaction of Light Between Diffuse Surfaces SIGGRAPH '84

Cornell box

- Calibration and measurement allows comparisons between reality and simulation

Light Measurement Laboratory
Cornell University, Program for Computer Graphics

The rendering equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}, ~}
$$

$\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)$ is the radiance from point x^{\prime} in direction of ω^{\prime}

Radiance is measured in [W/(m $\left.{ }^{2} \cdot \mathrm{sr}\right)$]
http://en.wikipedia.org/wiki/Radiance

The rendering equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{\mathrm{x}}(}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}
$$

$\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)$ is the emitted radiance: E is greater zero for light sources

The rendering equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\underbrace{\int_{\rho_{x}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}$

Sum of contributions from all other scene elements to the radiance from point x' in direction of ω^{\prime}

The rendering equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x^{\prime}}}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}
$$

For every x , compute $\mathrm{L}(\mathrm{x}, \omega)$, the radiance in point x in direction ω (from x to x^{\prime})

The rendering equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}$

The contribution is scaled by $\rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right)$
(the BRDF in x^{\prime})

The rendering equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x^{\prime}}}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}
$$

For every x , determine $\mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$, the visibility from x relative to x^{\prime} :
1 if there is no occlusion in direction $\omega, 0$ otherwise

The rendering equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{\mathrm{x}}(}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}
$$

For every x , compute $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$, the geometry term w.r.t. x and x '

$G\left(x, x^{\prime}\right)$?

- Which constellation leads to a large exchange of light and why?

The radiosity assumptions

- Surfaces are Lambertian (perfectly diffuse)
- Reflection occurs in all directions
- The scene is split into small surface elements
- The radiosity B_{i}, is the total radiosity that comes from element i
- For each element, the radiosity is constant

The radiosity equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x^{\prime}}}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}
$$

Radiosity assumption:
Perfectly diffuse surfaces - no directional dependency

$$
\mathrm{B}_{\mathrm{x}^{\prime}}=\mathrm{E}_{\mathrm{x}^{\prime}}+\rho_{\mathrm{x}^{\prime}} \int \quad \mathrm{B}_{\mathrm{x}} \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)
$$

The radiosity equation

- Continuous radiosity equation Reflection factor

$$
\mathrm{B}_{\mathrm{x}^{\prime}}=\mathrm{E}_{\mathrm{x}^{\prime}}+\rho_{\mathrm{x}^{\prime}} \int \underbrace{\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)}_{\text {Form factor }} \mathrm{B}_{\mathrm{x}}
$$

- G: geometry term
- V: visibility term
- Properties
- No analytical solution, even for simple scenes

The radiosity equation

- Discretize into elements with const. radiosity Reflection factor $B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}$ Form factor
- Properties
- Iterative solution
- Expensive geometry computations

The radiosity matrix

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}
$$

- n linear equations in n unknowns B_{i} :

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & & \\
\vdots & & \ddots & \\
-\rho_{n} F_{n 1} & \cdots & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

- The solution of this LSE results in B_{i}, which are independent of viewer position and direction

The radiosity matrix

Iterative solution

- The radiosity of an element is replaced by the multiplication of a row with the current solution vector (Gathering) (= Gauss-Seidel iteration)

$$
\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{i} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{i} \\
\vdots \\
E_{n}
\end{array}\right]+\left[\begin{array}{lllll}
\\
& & & & \\
\rho_{i} F_{n 1} & \rho_{i} F_{i 2} & \cdots & \rho_{i} F_{i n} \\
& & &
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{i} \\
\vdots \\
B_{n}
\end{array}\right]
$$

Rendering the radiosity solution

- B_{i} are constant per Element
- How to map to graphics hardware?
- Average radiosity-
 values for each vertex
- Extrapolate for vertices on the boundary

Form factors

- $F_{i j}=$ Part of radiance from j that reaches i
- Influenced by:
- Geometry (area, orientation, position)
- Visibility (other elements of the scene) patch j

Form factors

- $F_{i j}=$ Part of radiance from j that reaches i

patch i

$$
F_{i j}=\frac{1}{A_{i}} \int_{A_{i}} \int_{A_{j}} \frac{\cos \theta_{i} \cos \theta_{j}}{\pi r^{2}} V_{i j} d A_{j} d A_{i}
$$

Form factors

Ray casting

- Create n rays between 2 elements
- n typically between 4 und 32
- Determine visibility
- Integrate point-point form factors
- Determines form factors between elements

Form factors

- Nusselt analog: the form factor is equivalent to the part of the unit circle, which the projection of the element occupies on the unit sphere

Form factors

Hemicube algorithm

- Place hemicube at element center
- Discretize the sides into pixels
- Project and rasterize other elements into cube
- Each hemicube pixel contains precomputed form factor
- Form factor for an element is the sum of contributions
- Visibility by depth buffer

Solving the radiosity equation

Progressive refinement

- Idea: instead of collecting radiosity from all sources ("gathering"), rather distribute radiosity from brightest emitters ("shooting")

Progressive refinement

$$
\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
\vdots \\
\vdots \\
B_{n}
\end{array}\right]+\left[\begin{array}{lll}
\cdots & \rho_{1} F_{l i} & \cdots \\
\cdots & \rho_{2} F_{2 i} & \\
& & \\
& & \\
\cdots & \rho_{n} F_{n i} & \cdots
\end{array}\right]\left[\begin{array}{c}
\\
\vdots \\
B_{i} \\
\vdots
\end{array}\right]
$$

Progressive refinement

- Each patch has remaining radiosity ΔB_{i}
- Start with $\mathrm{B}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}$ and $\Delta \mathrm{B}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}$
- Distribute $\Delta \mathrm{B}_{\mathrm{i}}$ to the scene
- Reciprocity:

$$
\begin{aligned}
& B_{i}=E_{i}+r_{i} \sum_{j=1}^{n} B_{j} F_{i j}, \text { for all } i \\
& A_{j} F_{j i}=A_{i} F_{i j} \\
& B_{i}=E_{i}+r_{i} \sum_{j=1}^{n} B_{j} F_{j i} \frac{A_{j}}{A_{i}}
\end{aligned}
$$

Progressive refinement

- After sending from patch j, the radiosity of elements A_{i} is increased

$$
B_{i}=B_{i}+r_{i} \Delta B_{j} F_{j i} \frac{A_{j}}{A_{i}}, i=1 . . n
$$

- The nondisributed radiosity is also increased

$$
\Delta B_{i}=\Delta B_{i}+r_{i} \Delta B_{j} F_{j i} \frac{A_{j}}{A_{i}}, i=1 . . n
$$

- The set undistributed radiosity of j to zero

$$
\Delta B_{i}=0
$$

Progressive refinement

- Each iteration only requires form factors F_{ij} for element i w.r.t. all other patches
- Good results after few iterations, resulting in significantly less overhead when compared to Gauss-Seidel iterations
- Only requires storing a single column of the form factor matrix

Progressive refinement

Without ambient term

Progressive refinement

With ambient term

Discretization into patches

- Image quality depends on the size of patches
- Smaller patches smaller error
- Patches should be adaptively subdivided where large gradients in radiosity are evident
- Start with regular grid
- Subdivide based on
 quality criterion

Discretization into patches

Photon Mapping Jensen 95

Examples

Lightscape
http://www.lightscape.com

Examples

Mental Ray

