CS 428: Fall 2010 Introduction to Computer Graphics

Procedural modeling

Procedural modeling

- Towards realism
- Complexity = work (e.g. 2D/3D content creation)
- Idea: put burden of work on computer for modeling relevant but nonspecific detail
- Small specification \rightarrow large range of detail/structure amplification
- Examples
- Mountains, trees, rivers, lightning, clouds, fire

Mountains

Clouds

Fractals

- Common approach in CG
- A language for complexity of form
- An engineering approach
- Modeling by structural similarity
- not based on reality
- Definition
- A geometrically complex object constructed via repetition over a range of scales (sizes): leaves \rightarrow trees \rightarrow forests

Fractal self similarity

- Fractals have some geometrical scale invariance
- Example: Koch-curve
- Each of the 4 line segments in the k-th step is a minified version of the entire curve in previous step by factor $1 / 3$

- Cropped detail of the original curve can not be distinguished from the original

Fractal dimension

- For objects of dimensions 1,2 and 3
- Subdivide into N equally sized parts
- Line $r=\frac{1}{N}$
- Square $r=\frac{1}{\sqrt{N}}$

- Cube $\quad r=\frac{1}{\sqrt[3]{N}} \quad N=r^{-D} \Leftrightarrow D=\frac{\log N}{\log 1 / r}$
- A segment of the Koch-curve is made up from $\mathrm{N}=4$ parts, each scaled by $\mathrm{r}=1 / 3$

$$
D=\frac{\log 4}{\log 3}=1.2619
$$

Fractal dimension

- Relation between number of parts N , and the associated scale factor $r \quad D=\log N / \log 1 / r$
- D is the fractal dimension or the self-similarity dimension of the structure (roughness)

Peano space filling curves

Mandelbrot set

float $m\left(x_{0}, y_{0}, i_{\text {max }}\right)$

$$
\begin{aligned}
& x=x_{0} \\
& y=y_{0}
\end{aligned}
$$

$$
\text { for } i=0 \text { to } i_{\max }
$$

$$
\text { if }\left(x^{2}+y^{2}>4\right) \text { return } i
$$

$$
(x, y) \leftarrow\left(x_{0}+x^{2}-y^{2}, y_{0}+2 x y\right)
$$

end for return 0 end

Fractals

- Build complexity from repetition
- Structure repetition
- Frequency, amplitude and lacunarity (space filling)
- Beneficial features
- Fine structure at all scales
- Not regular
- Self similar
- Compact description

Stochastistic self similarity

- Natural objects such as farns or coastlines are not exactly identical when magnified
- But characteristics are similar
- Magnified coast line similar to original
- This phenomenon is captured by stochastic selfsimilarity

Stochastistic fractals

- Used to model
- Terrain, clouds, waves, tree bark, etc.
- Useful for generating 3D wood/marble textures
- Simulation of Brownian motion

Brownian motion

- Non-stationary stochastic process $\{\mathrm{X}(\mathrm{t})\}$
- Increments $X(\mathrm{t}+\mathrm{s})-\mathrm{X}(\mathrm{t})$ are Gaussian distributed with expected value of zero
- Variance of increments is proportional to time difference $\rightarrow \operatorname{var}(X(t+s)-X(t)) \sim|s|$
- Statistically self-similar
$X(t) \quad$ Statistically similar to $\frac{1}{\sqrt{r}} X(r t)$

Fractal Brownian motion

- Brownian motion has fractal dimension 1.5
- Dimension D of natural objects ranges from 1.15 and 1.25
- Use of fractal Brownian motion (fBm)

$$
\mathrm{D}=1.2
$$

Brownian motion application

- Midpoint displacement (for $\mathrm{D} \in[1,2]$)
- Step 0: X(1/2) $=(X(0)+X(1)) / 2+D_{0}$
- Step n : linear interpolation between neighboring points and displacement by D_{n}
- D_{n} is a Gaussian distributed random variable with

$$
\begin{aligned}
& E\left(D_{n}\right)=0 \text { and } \\
& \operatorname{var}\left(D_{n}\right)=\left(1-2^{2-2 D}\right) / 2^{n(4-2 D)}
\end{aligned}
$$

- $\mathrm{X}(\mathrm{t})$ and $1 / 2^{(2-D)} \mathrm{X}(2 \mathrm{t})$ are statistically self-similar

Brownian motion application

- Midpoint displacement (for $\mathrm{D} \in[1,2]$)
- Case of $D=1.5$, with $E\left(D_{n}\right)=0$ (mean $=0$)
- Start with $\operatorname{var}\left(D_{n}\right)=0.5$ (for initial grid spacing of 1)
- In each step, scale $\operatorname{var}\left(D_{n}\right)$ by $1 / 2$
- Same as $\operatorname{var}\left(D_{n}\right)=0.5 \cdot(1 / 2)^{n}$
- Use Random class in Java nextDouble () (in [0,1])
nextGaussian() (mean = 0, var = 1)

Midpoint displacement in 2D

- Create refined grid

- In every step the grid resolution is scaled by a factor of $r=\frac{1}{\sqrt{2}}$
- The variance of random displacements is scaled by

$$
r^{4-2 D}=\left(\frac{1}{2}\right)^{2-D} \quad \text { for } \mathrm{D}=1.5 \quad r=\left(\frac{1}{2}\right)^{0.5}=\frac{1}{\sqrt{2}}
$$

Fractal trees

- Hierarchical fractal modeling

- Random angles, lengths, placements

Fractal trees

- At end of recursion, add leaf
- Decrease branch length and leaf (a polygon) radius as recursion depth increases

Fractal fern

Procedural textures

Perlin Noise

- Sum of band limited functions (octaves)
- In uv space compute a pseudorandom number and a gradient
- Interpolation (linear, cubic) between integer uv's provides a smooth band limited function

Procedural textures
 Perlin Noise

