
CS 428: Fall 2010

Introduction to

Computer GraphicsComputer Graphics

Polygon rendering: additional topics

10/13/2010 1Andrew Nealen, Rutgers, 2010

z-buffer algorithm

� The depth buffer was suggested in 1974 but

not implemented (too expensive)

� For each pixel store a z-value (depth image)

� Initialization� Initialization

� Frame buffer = clear color

� z-buffer »maximal z-value

� Raster all scene objects sequentially

� The order is not essential (for opaque objects)

10/13/2010 2Andrew Nealen, Rutgers, 2010

z-buffer algorithm

� For each point(x,y) of each polygon

� Compute z(x,y)

� Perspective

transformation

� If z(x,y) is smaller than the stored value at (x,y)

� Write z(x,y) into z-buffer, and write the associated color

value at (x,y) into the frame buffer

� After this terminates, only visible parts of the

surface(s) are visible in the frame buffer

Andrew Nealen, Rutgers, 2010 10/13/2010 3

z-buffer algorithm
Advantages

� Any scene with any object representation can

be handled (entirely image-based)

� Complexity is independent of depth

complexitycomplexity

� Objects can be added into a rendered scene

� Interesting when adding objects to camera shots

� Simple to implement in hardware

10/13/2010 4Andrew Nealen, Rutgers, 2010

z-buffer algorithm
Drawbacks

� Only one object stored per image pixel

� Resulting sampling errors can be reduced by
supersampling [higher image resolution], but not
entirely removed

� Transparency is not possible with an active � Transparency is not possible with an active
depth test

� The precision of the z-buffer is limited

� Separate objects have the same z-value

� The pixel color is then entirely determined by the
rendering order (and glDepthFunc(…))

10/13/2010 5Andrew Nealen, Rutgers, 2010

z-buffer algorithm
OpenGL details

� Active when GL_DEPTH_TEST is enabled

� Initially, depth testing is disabled

� glDepthFunc(GLenum func) determines � glDepthFunc(GLenum func) determines
the nature of the depth test

� The initial value of func is GL_LESS

� Also available GL_NEVER, GL_EQUAL,
GL_LEQUAL, GL_GREATER, GL_NOTEQUAL,
GL_GEQUAL, and GL_ALWAYS

Andrew Nealen, Rutgers, 2010 10/13/2010 6

OpenGL polygon rendering modes

� Determined by

glPolygonMode(face, mode)

� face� face

GL_FRONT, GL_BACK,

GL_FRONT_AND _BACK

� mode

GL_POINT, GL_LINE, GL_FILL

Andrew Nealen, Rutgers, 2010 10/13/2010 7

Preventing z-fighting

� Use

glPolygonOffset(factor, units)

� Adds offset = (∆z ∙ factor + r ∙ units) to the depth � Adds offset = (∆z ∙ factor + r ∙ units) to the depth

buffer value before the depth test

� ∆z = ∆depth / area (per primitive/polygon)

� r = z-buffer precision (hardware dependent)

� Use factor in project 2

� glEnable(GL_POLYGON_OFFSET_FILL)

Andrew Nealen, Rutgers, 2010 10/13/2010 8

Color and depth masks

� glColorMask(r, g, b, a)

� r, g, b, a are GLboolean values (true by default)

� Selectively enable/disable writing to the frame

buffer during renderingbuffer during rendering

� glDepthMask(d)

� d is a GLboolean value (true by default)

� enable/disable writing to the z-buffer during

rendering

Andrew Nealen, Rutgers, 2010 10/13/2010 9

Face culling

� Given consistent polygon orientation (CCW)

� glCullFace([GL_FRONT | GL_BACK])

� Only when GL_CULL_FACE in enabled

Andrew Nealen, Rutgers, 2010 10/13/2010 10

Non-photorealistic rendering (NPR)

Andrew Nealen, Rutgers, 2010 10/13/2010 11

Non-photorealistic rendering (NPR)

� Lines

� Silhouettes, creases

� Shading

� Toon shading� Toon shading

� Hatching

Andrew Nealen, Rutgers, 2010 10/13/2010 12

Silhouettes and Toon shading

Normal shading Silhouettes Toon shadingNormal shading Silhouettes Toon shading

Silhouettes + toon shading

10/13/2010 13Andrew Nealen, Rutgers, 2010

Silhouettes (a.k.a. contours)

� Mark changes in visibility

� Separate front and � Separate front and

back facing polygons

� Direct: compute sil edges + render visible ones

� Indirect: render scene

so that sils are visible

Andrew Nealen, Rutgers, 2010 10/13/2010 14

Toon shading

� A form of color quantization

Andrew Nealen, Rutgers, 2010 10/13/2010 15

Toon shading in OpenGL

� Turn off OpenGL lighting and use glColor

directly

� Not necessary� Not necessary

when using GLSL

� Instead, compute

local lighting and

mapping per pixel

Andrew Nealen, Rutgers, 2010 10/13/2010 16

� Rasterization

� Primitives (lines, polygons) are mapped to pixels

Excursion: rasterization

� Additional operations per pixel

� Visibility (including transparency)

� Shading and

� Texturing
10/13/2010 17Andrew Nealen, Rutgers, 2010

Rasterization of lines
Differential Digital Analyzer

� Lines, where start and

endpoints lie on the grid

∆

∆

x x x

y y y

= −

= −

2 1

2 1

,

,
− ≤ ≤1 1

∆

∆

x

y

� Compute

� Draw pixel at (x, round(y))

∆y y y= −2 1, ∆y

y
y

x
x b

x x i i x

i i

i

= +

= + =

∆

∆

∆

* ,

, ,...,

 1 1

10/13/2010 18Andrew Nealen, Rutgers, 2010

Rasterization of lines
Differential Digital Analyzer

� Not efficient: every pixel operation requires

� fp multiplication + Addition + Rounding

� Idea: incremental Algorithm

y
y
x b

+ +
= +
∆
* ∆ ∆x x x y y y= − = −; ;

� For xi+1-xi=1
we have

y
x
x b

y

x
x x x b

y
y

x
x x

i i

i i i

i i i

+ +

+

+

= +

= + − +

= + −

1 1

1

1

∆

∆

∆

∆

∆

*

(()

()

y y
y

x
i i+
= +1

∆

∆

∆ ∆

∆

∆

x x x y y y

m
y

x

x x y y

x x x x x

x y

y round (y m

= − = −

=

= =

= ≤ ++

2 1 2 1

1 1

1 2

; ;

; ;

(, ,)for {

DrawPixel (,);

= +);}

10/13/2010 19Andrew Nealen, Rutgers, 2010

Rasterization of lines
Bresenham‘s algorithm

� First integer-algorithm for line drawing

� Bresenham (1965)

� Derivation

� Begin and endpoint on P x y= (,)� Begin and endpoint on

the grid

� Slope between 0 and 1

∆

∆

∆ ∆

x x x

y y y

x y

= − ≥

= − ≥

≥

2 1

2 1

0

0

,

,

.
P x y1 1 1= (,)

P x y2 2 2= (,)

10/13/2010 20Andrew Nealen, Rutgers, 2010

Rasterization of lines
Bresenham‘s algorithm

� Which pixel center is closer to the line?

Is d ≤ 1/2 or is d > 1/2?

� Decision variable E
y

x
:= −
∆

∆

1

2

′ = = −E xE y x: 2 2∆ ∆ ∆

x x:= +1 x x

y y

:

:

= +

= +

1

1

E E
y

x
:= +

∆

∆
E E

y

x
:= + −

∆

∆
1

E ≤ 0: E > 0:

′ = = −E xE y x: 2 2∆ ∆ ∆

′ = ′ +E E y: 2∆ ′ = ′ + −E E y x: 2 2∆ ∆

=
∆

∆

y

x

10/13/2010 21Andrew Nealen, Rutgers, 2010

Rasterization of lines
Smoothing

� For each x-value (columns) two pixels are

colored

� Brightness in each column is equal

� Distribution proportional to the distance of � Distribution proportional to the distance of

each pixel to the ideal position

� Brightness decreases linearly with distance

10/13/2010 22Andrew Nealen, Rutgers, 2010

Rasterization of polygons

� Scanline algorithm

� Intersect scan line with all edges of the polygon

� Sort intersections by x-coordinate

� Fill pixels between pairs of subsequent

scan line

2 4 106 8 12

2

4

10

6

8

12

� Fill pixels between pairs of subsequent

intersections (Rule of odd parity)

� Parity is initially 0

� Every intersection increases

parity by 1

� Draw pixel when parity is odd

10/13/2010 23Andrew Nealen, Rutgers, 2010

Rasterization of polygons

� Quantities from vertices are interpolated to

the pixels

� Colors (linear interpolation in screen space)

� Texture coordinates (non-linear interpolation!)

scan line

2 4 106 8 12

2

4

10

6

8

12

� Texture coordinates (non-linear interpolation!)

� Texture look-up after rasterization

(e.g. in fragment shader)

� Next week

� Texture mapping

� Texture filtering (sampling)

10/13/2010 24Andrew Nealen, Rutgers, 2010

Linear interpolation in screen

coordinates (image space)

� Texture coordinates need special treatment

Andrew Nealen, Rutgers, 2010 10/13/2010 25

2D texture Object space

interpolation

Image space

interpolation

Linear interpolation in screen

coordinates (image space)

� Linear interpolation in screen space works for

(fake) lighting interpolation

� But this breaks along T-joints (avoid them!)

Andrew Nealen, Rutgers, 2010 10/13/2010 26

