CS 428: Fall 2010
Introduction to

Computer Graphics

Polygon rendering: additional topics

Andrew Nealen, Rutgers, 2010 10/13/2010

z-buffer algorithm

The depth buffer was suggested in 1974 but
not implemented (too expensive)

For each pixel store a z-value (depth image)

Initialization

" Frame buffer = clear color

» z-buffer » maximal z-value

Raster all scene objects sequentially

" The order is not essential (for opaque objects)

z-buffer algorithm

" For each point(x,y) of each polygon

L1

_—

\

—

= Compute z(x,y) *
" Perspective LT /
transformation T

™~

™~

/

—

= If z(x,y) is smaller than the stored value at (x,y)

= Write z(x,y) into z-buffer, and write the associated color

value at (x,y) into the frame buffer

" After this terminates, only visible parts of the
surface(s) are visible in the frame buffer

z-buffer algorithm

Advantages

Any scene with any object representation can
be handled (entirely image-based)

Complexity is independent of depth
complexity

Objects can be added into a rendered scene
" |[nteresting when adding objects to camera shots

Simple to implement in hardware

z-buffer algorithm

Drawbacks

" Only one object stored per image pixel

" Resulting sampling errors can be reduced by
supersampling [higher image resolution], but not
entirely removed

" Transparency is not possible with an active
depth test

" The precision of the z-buffer is limited
= Separate objects have the same z-value

" The pixel color is then entirely determined by the
rendering order (and glDepthFunc(...))

z-buffer algorithm
OpenGL details

" Active when GL_DEPTH TEST is enabled
= |nitially, depth testing is disabled

* glDepthFunc (GLenum func) determines
the nature of the depth test
" The initial value of func is GL_LESS

= Also available GL_NEVER, GL_EQUAL,
GL LEQUAL, GL GREATER, GL NOTEQUAL,
GL GEQUAL, and GL ALWAYS

OpenGL polygon rendering modes

" Determined by
glPolygonMode (face, mode)

" face
GL FRONT, GL_ BACK,
GL _FRONT AND _BACK

" mode
GL_POINT, GL_LINE, GL_FILL

Preventing z-fighting

= Use
glPolygonOffset (factor, units)

= Adds offset = (Az - factor + r - units) to the depth
buffer value before the depth test

» Az = Adepth / area (per primitive/polygon)
» r = z-buffer precision (hardware dependent)

= Use factor in project 2
" glEnable (GL POLYGON OFFSET FILL)

Color and depth masks

" glColorMask(r, g, b, a)
" r, g, b, a are GLboolean values (true by default)

= Selectively enable/disable writing to the frame
buffer during rendering

" glDepthMask (d)
" dis a GLboolean value (true by default)

» enable/disable writing to the z-buffer during
rendering

Face culling

" Given consistent polygon orientation (CCW)
Q_m-!" focig

C b ack E‘"M}
=)

K| oY !
C facg plygos 75° e

* glCullFace ([GL FRONT | GL BACK])
" Only when GL CULL FACE in enabled

Non-photorealistic rendering (NPR)

i T - ™ .nl..l.“r....-tr.-f
y | -..... i . A |
" .
i | | .,

.... 1 ._____._._ il _____.__. Wk S
aﬂwhvmmw, :k:. ;:fmwf.ﬁﬂ%mwm“

= rEw s o
; R T T R b
o__“.\.r L R
g .
a2

11

10/13/2010

Andrew Nealen, Rutgers, 2010

Non-photorealistic rendering (NPR)

y LI

" Lines
= Silhouettes, creases
" Shading
" Toon shading
" Hatching

Andrew Nealen, Rutgers, 2010 10/13/2010

12

Silhouettes and Toon shading

@ —

Normal shading Silhouettes Toon shading

Nt

Silhouettes + toon shading

Andrew Nealen, Rutgers, 2010 10/13/2010 13

Silhouettes (a.k.a. contours)

" Mark changes in visibility

¥' (:;L EJJ(H
= Separate front and ¥ ~
oack facing polygons m

" Direct: compute sil edges + render visible ones

" Indirect: render scene . e
'“--5 selt euire Lo
so that sils are visible ¥ e C D77 e 7

Toon shading

. ,A: f{orm of color quantilza%cion BT e
Il “chadswc”
1 ' ° ;
on shadds

normel ched
K mps [0,1) = [e43

Andrew Nealen, Rutgers, 2010 10/13/2010 15

Toon shading in OpenGL

" Turn off OpenGL lighting and use glColor
directly

= Not necessary
when using GLSL

= |nstead, compute
local lighting and
mapping per pixel

= Rasterization

" Primitives (lines, polygons) are mappecd

Excursion: rasterization

AN

[N

B
= Additional operations per pixel

= Visibility (including transparency)

* Shading and
= Texturing

Andrew Nealen, Rutgers, 2010

10/13/2010

17

Rasterization of lines
Differential Digital Analyzer

" lines, where start and
endpoints lie on thegrid

Ax=x,—x,,

Ay=y,=¥, Ay

= Compute
_Mv,
Vi _Ax

X, =x,+i,i=1..,Ax

x, +b,

" Draw pixel at (x, round(y))

Rasterization of lines
Differential Digital Analyzer

" Not efficient: every pixel operation requires
= fp multiplication + Addition + Rounding

" |dea: incremental Algorithm

- For xl+1_xl:1 yi+1:yi+_

we have

_,
Yin =3~ K +b Ax=x,—x; Ay =y,—y;
A

Ay _2

= E(xl +(.xl-+1 —)Cl)-l-b m Ax
Ay X=X Y= W5
_yl +E(xl+l_XZ) fOT (x:xlaxgxzax_i__'_){
Ay DrawPixel (x,y);

Ax y=round (y+m);}

Rasterization of lines

Bresenham’s algorithm

" First integer-algorithm for line drawing

" Bresenham (1965)
= Derivation

" Begin and endpoint on
the grid

" Slope between 0 and 1
Ax=x,—x, 20,

Ay=y,=» 20,
Ax=>NAy.

(x

12

_1)

Rasterization of lines

Bresenham’s algorithm

" Which pixel center is closer to the line?
Isd<1/2orisd>1/27

. . . A 1
= Decision variable E:=Xy———
X 2
E’:: 2AXE = 2Ay— Ax
E<O0: E > 0:
x=x+1 x=x+1 o |0 ¢ Ay
di=—1
yvi=y+1 o o & T A
A
EZZE-I—Q E;:E+_y_1
Ax

Ax
E':=E"+2Ay E""=FE"+2Ay—2Ax

Rasterization of lines

Smoothing

For each x-value (columns) two pixels are

colored

Brightness in each column is equal

Distribution proportional to the distance of

each pixel to the idea
Brightness decreases

-

position
inearly with distance

Rasterization of polygons

= Scanline algorithm
" |[ntersect scan line with all edges of the polygon
= Sort intersections by x-coordinate
" Fill pixels between pairs of subsequent

intersections (Rule of odd parity)|
" Parity is initially O 19 \ -
= Every intersection increases 10 k\j > eanine
]] \ \
parity by 1 ' \
. e 0 \ \
" Draw pixel when parityisodd 4 ==
2

2 4 6 8 10 12

Andrew Nealen, Rutgers, 2010 10/13/2010 23

Rasterization of polygons

" Quantities from vertices are interpolated to
the pixels
= Colors (linear interpolation in screen space)
= Texture coordinates (non-linear interpolation!)

" Texture look-up after rasterization
(e.g. in fragment shader)

12 \ ~
- scan line
= Next week ; %\/ \
) \
A

= Texture mapping

6
= Texture filtering (sampling) j

2 4 6 8 10 12

Andrew Nealen, Rutgers, 2010 10/13/2010 24

Linear interpolation in screen
coordinates (image space)

= Texture coordinates need special treatment

(A)

1
/

b /
L7 Vg

2D texture Object space Image space
interpolation interpolation

Andrew Nealen, Rutgers, 2010 10/13/2010 25

Linear interpolation in screen
coordinates (image space)

" Linear interpolation in screen space works for
(fake) lighting interpolation

= But this breaks along T-joints (avoid them!)

A "T" joint

Andrew Nealen, Rutgers, 2010 10/13/2010 26

