CS 428: Fall 2010

Introduction to Computer Graphics

Polygonal rendering: illumination

Polygon shading

- Non-global illumination
 - No shadows, refraction, inter-object reflection...

- Describing light
 - Units don't worry for now, just use ratio

light exiting surface towards viewer light incident on surface from lights

Polygon shading

- Describing light
 - Units don't worry for now, just use ratio
 - light exiting surface towards viewer light incident on surface from lights
 - ▶■ Depends on
 - Physical material/surface properties
 - Geometric relation between lights, surface and viewer
 - Color and intensity of lights in the scene
 - Hard to define these properties precisely

Bidirectional reflection distribution function (**BRDF**)

- Describes reflection of light
- Spectral reflection factor
- Ratio of reflected radiance L to incident irradiance E

$$\rho(\lambda, \phi_r, \theta_r, \phi_i, \theta_i) = \frac{L_{\lambda,r}(\lambda, \phi_r, \theta_r)}{E_{\lambda,i}(\lambda, \phi_i, \theta_i)} = \frac{L_{\lambda,r}(\lambda, \phi_r, \theta_r)}{\int L_{\lambda,i}(\lambda, \phi_i, \theta_i) \cos(\theta_i) d\Omega_i}$$

- Incident irradiance: Index i
- Reflected radiance: Index r

Bidirectional reflection distribution function (**BRDF**)

1. Reciprocity

• ρ_{λ} does not change, when switching incident and reflected direction

2. ρ_{λ} is generally anisotropic

- Rotation about the surface normal changes ρ_{λ}
- Typical examples are cloth or brushed metal

3. Superposition

- Light from various directions can be linearly added
- Integrating over all incident directions leads to

$$L_{\lambda,r} = \int_{\Omega_i} \rho L_{\lambda,i} \cos(\theta_i) d\Omega_i$$

Bidirectional reflection distribution function (**BRDF**)

- Reflection factor is always positive
- In CG we use the reflection ratio r
 - Applied to luminance/brightness
 - Dimensionless

light exiting surface towards viewer light incident on surface from lights

Illumination models

- Not physics-based
 - rather an approximation which is more computationally tractable
- Ambient reflection
- Diffuse reflection
- Specular reflection
- All use a point light source
 - (x,y,z) + Intensity (I_r, I_g, I_b)

Ambient reflection

Light scattered in scene – uniformly

Intensity of ambient light reflec

Ambient reflection

Light scattered in scene – uniformly

- Independent of light, viewer + surface position
- Hack to get some global illumination effects
- Without this term, images have too much contrast

Diffuse (Lambertian) reflection

- Typical of dull, matte surfaces → rough
- Independent of viewer position
- Dependent on light position

surface (no illusionation)

Diffuse (Lambertian) reflection

Lamberts cosine law

Diffuse (Lambertian) reflection

Lamberts cosine law

Geometric intuition

- Mirror reflection by law of reflection
 - The incident and reflected ray form the same angle with the surface normal
 - The incident and reflected ray and surface normal all lie in the same plane
 - In polar coordinates: $\theta_r = \theta_i$ and $\phi_r = \phi_i + \pi$
 - For view ray I and (normalized) normal n

$$\mathbf{r} = -\mathbf{s} + 2 (\mathbf{s} \cdot \mathbf{n}) \mathbf{n}$$

Geometry of Reflection law

 $\theta_i \qquad \theta_r$

Geometry of refraction law

Law of refraction

- The incident and refracted ray and surface normal all lie in the same plane
- Sine of the incident angle has a constant ratio to the sine of the refraction angle
 - This ratio is dependent on the nature of the participating media

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \Leftrightarrow \frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} = const.$$

- n₁ and n₂ are the indices of refraction
 - Defined as the ratio of light speed in vacuum to light speed in the participating media

Total reflection

- Transition from optically dense to less dense material n₂ < n₁
 - Rays refracted away from the surface normal

■ There exists an incident angle θ_T with refraction angle of 90° $\sin \theta_T = \frac{n_2}{1}$.

• Once θ_T is exceeded

- All light reflected on the boundary between media
- Total reflection

Directed reflection from shiny surfaces

Resulting color is a combination of surface color + light color

ut u hi fe hisklis a t

Directed reflection from shiny surfaces

■ More reflection as ϕ goes to 0

Phong reflection

• More reflection as ϕ goes to 0

■ Not just $\cos \phi \rightarrow \text{use } \cos^{\alpha} \phi$

- As α increases
 surface looks shinier
- $lacktriangleq \alpha$ is surface property

Blinn-Phong reflection

- Use halfway vector instead
 - Somwhat more efficient (less operations)

Used in OpenGL

Directed diffuse reflection

- Ideal reflectors (Lambert or mirror) seldom
- Heuristic to model the real BRDF
- Combination of ambient, diffuse and specular
 - Should add to 1 (careful when selecting coeffs!)

Combination

ambient

diffuse

specular

all

OpenGL details

Colored lights and surfaces

 Also, light colors for each of the types of lighting, and each light source

OpenGL details

```
// light and material
float mat ambient[] = { 0.5f, 0.5f, 0.5f, 1.0f };
float mat specular[] = { 0.6f, 0.6f, 0.6f, 1.0f };
float mat shininess[] = { 3.0f };
float model ambient[] = { 0.3f, 0.3f, 0.3f };
float light position[] = { 5.0f, 5.0f, 5.0f, 0.0f };
glMaterialfv(GL FRONT, GL AMBIENT, mat ambient);
glMaterialfv(GL FRONT, GL SPECULAR, mat specular);
glMaterialfv(GL FRONT, GL SHININESS, mat shininess);
glLightfv(GL LIGHT0, GL POSITION, light position);
glLightModelfv(GL LIGHT MODEL AMBIENT, model ambient);
glEnable(GL LIGHTING);
glEnable(GL LIGHT0);
```

Polygon mesh shading

Each polygon independent, shaded separately

Three ways to do this

- Constant faceted. Single color per polygon
- Gouraud intensity interpolation
- Phong surface normal interpolation

Polygon mesh shading

Gouraud Shading Mach bands

Gets better with more polygons ————

Barycentric interpolation of illumination

Barycentric interpolation of illumination

$$\widehat{\Lambda}_{V} = \frac{\widehat{N}_{1} + \widehat{N}_{2} + \widehat{N}_{3} + \widehat{N}_{4}}{11}$$

side view Mi

___ Constant

Problems

• Motion aliasing makes this worse!

Phong shading

- Interpolate normals linearly at each pixel
 - Lighting computation at each pixel

- Looks much better
- More expensive
- Only works in graphics hardware (GLSL etc.)