CS 428: Fall 2010 Introduction to Computer Graphics

Polygonal rendering: illumination

Polygon shading

- Non-global illumination
- No shadows, refraction, inter-object reflection...
- Describing light
- Units - don't worry for now, just use ratio
light exiting surface towards viewer
light incident on surface from lights

Polygon shading

- Describing light
- Units - don't worry for now, just use ratio
- $\frac{\text { light exiting surface towards viewer }}{\text { light incident on surface from lights }}$

Depends on

- Physical material/surface properties

- Geometric relation between lights, surface and viewer
- Color and intensity of lights in the scene
- Hard to define these properties precisely

Bidirectional reflection distribution function (BRDF)

- Describes reflection of light
- Spectral reflection factor
- Ratio of reflected radiance L to incident irradiance E
$\rho\left(\lambda, \phi_{r}, \theta_{r}, \phi_{i}, \theta_{i}\right)=\frac{L_{\lambda, r}\left(\lambda, \phi_{r}, \theta_{r}\right)}{E_{\lambda, i}\left(\lambda, \phi_{i}, \theta_{i}\right)}=\frac{L_{\lambda, r}\left(\lambda, \phi_{r}, \theta_{r}\right)}{\int L_{\lambda, i}\left(\lambda, \phi_{i}, \theta_{i}\right) \cos \left(\theta_{i}\right) d \Omega_{i}}$
- Incident irradiance: Index i
- Reflected radiance: Index r

Bidirectional reflection distribution function (BRDF)

1. Reciprocity

- ρ_{λ} does not change, when switching incident and reflected direction

2. ρ_{λ} is generally anisotropic

- Rotation about the surface normal changes ρ_{λ}
- Typical examples are cloth or brushed metal

3. Superposition

- Light from various directions can be linearly added
- Integrating over all incident directions leads to

$$
L_{\lambda, r}=\int_{\substack{\Omega_{i} \\ 10 / 6 / 2010}} \rho L_{\lambda, i} \cos \left(\theta_{i}\right) d \Omega_{i}
$$

Bidirectional reflection distribution function (BRDF)

- Reflection factor is always positive
- In CG we use the reflection ratio r
- Applied to luminance/brightness
- Dimensionless
light exiting surface towards viewer
light incident on surface from lights

Illumination models

- Not physics-based
- rather an approximation which is more computationally tractable
- Ambient reflection
- Diffuse reflection
- Specular reflection
- All use a point light source
- ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) + Intensity $\left(I_{r}, I_{g}, I_{b}\right)$

Ambient reflection

- Light scattered in scene - uniformly

$$
\begin{aligned}
& I_{\text {ambiait }} \underbrace{L_{a}} K_{a} \\
& \text { Intensity of } \\
& \text { ambient light } \\
& \text { fraction of } \\
& \text { ambient light } \\
& \text { reflected } \in[0,1]
\end{aligned}
$$

Ambient reflection

- Light scattered in scene - uniformly
- Independent of light, viewer + surface position
- Hack to get some global illumination effects
- Without this term, images have too much contrast

Diffuse (Lambertian) reflection

- Typical of dull, matte surfaces \rightarrow rough
- Independent of viewer position
- Dependent on light position

(full ; Illumination)

Diffuse (Lambertian) reflection

- Lamberts cosine law

$$
I_{\begin{array}{c}
\text { diffane } \\
\begin{array}{c}
\text { intensity of } \\
\text { point light } \\
\text { source }
\end{array} \\
L_{d}
\end{array} \underbrace{k_{d}}_{\begin{array}{c}
\text { diffuse reflection } \\
\text { coff of of surtive }
\end{array}} \cos \theta=[0,1]}
$$

Diffuse (Lambertian) reflection

- Lamberts cosine law
$L_{d} k_{d}-\max (0, \cos \theta)$ for whem surface faces the other way
- Geometric intuition

Ideal reflection

- Mirror reflection by law of reflection
- The incident and reflected ray form the same angle with the surface normal
- The incident and reflected ray and surface normal all lie in the same plane
- In polar coordinates: $\theta_{r}=\theta_{i}$ and $\phi_{r}=\phi_{i}+\pi$
- For view ray land (normalized) normal n

$$
\mathbf{r}=-\mathbf{s}+2(\mathbf{s} \cdot \mathbf{n}) \mathbf{n}
$$

Ideal reflection

Geometry of Reflection law

Geometry of refraction law

Ideal reflection

Law of refraction

- The incident and refracted ray and surface normal all lie in the same plane
- Sine of the incident angle has a constant ratio to the sine of the refraction angle
- This ratio is dependent on the nature of the participating media

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \Leftrightarrow \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}=\text { const } \text {. }
$$

- n_{1} and n_{2} are the indices of refraction
- Defined as the ratio of light speed in vacuum to light speed in the participating media

Ideal reflection

Total reflection

- Transition from optically dense to less dense material $\mathrm{n}_{2}<\mathrm{n}_{1}$
- Rays refracted away from the surface normal
- There exists an incident angle θ_{T} with refraction angle of 90응
- Once θ_{T} is exceeded

$$
\begin{aligned}
& \sin \theta_{T}=\frac{n_{2}}{n_{1}} . \\
& \text { ed }
\end{aligned}
$$

- All light reflected on the boundary between media
- Total reflection

Specular reflection

- Directed reflection from shiny surfaces

- Resulting color is a combination of surface color + light color

Specular reflection

- Directed reflection from shiny surfaces

- More reflection as ϕ goes to 0

Specular reflection
 Phong reflection

- More reflection as ϕ goes to 0
- Not just $\cos \phi \rightarrow$ use $\boldsymbol{\operatorname { c o s }}^{\alpha} \phi$
- As α increases surface looks shinier
- α is surface property

$$
\begin{aligned}
= & L_{s} k_{s} \cos ^{\alpha} \phi \\
I_{\text {specular }} & =L_{s} \underbrace{k_{s}}_{\text {spec e }}(\hat{r} \cdot \hat{v})^{\alpha} \text { flec coeff } \in[0,1]
\end{aligned}
$$

Specular reflection
 Blinn-Phong reflection

- Use halfway vector instead
- Somwhat more efficient (less operations)
- Used in OpenGL

$$
h=\frac{\ell+v}{|\ell+v|} \rightarrow \underset{\substack{\text { instead }}}{(n, h)_{\text {of }}}
$$

Directed diffuse reflection

- Ideal reflectors (Lambert or mirror) seldom
- Heuristic to model the real BRDF
- Combination of ambient, diffuse and specular
- Should add to 1 (careful when selecting coeffs!)

Combination

specular

OpenGL details

- Colored lights and surfaces
- Also, light colors for each of the types of lighting, and each light source

OpenGL details

```
// light and material
float mat_ambient[] = { 0.5f, 0.5f, 0.5f, 1.0f };
float mat_specular[] = { 0.6f, 0.6f, 0.6f, 1.0f };
float mat_shininess[] = { 3.0f };
float model_ambient[] = { 0.3f, 0.3f, 0.3f };
float light_position[] = { 5.0f, 5.0f, 5.0f, 0.0f };
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, model_ambient);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
```


Polygon mesh shading

- Each polygon independent, shaded separately
- Three ways to do this

- Constant - faceted. Single color per polygon
- Gouraud - intensity interpolation
- Phong - surface normal interpolation

Polygon mesh shading

Mach banding effects

Gouraud Shading Mach bands

Gets better with more polygons

Gouraud shading

- Barycentric interpolation of illumination

Gouraud shading

- Barycentric interpolation of illumination

Gouraud shading

$$
\hat{n}_{V}=\frac{\hat{n}_{1}+\hat{n}_{2}+\hat{n}_{3}+\hat{n}_{4}}{\|\quad\|}
$$

side view

$$
\begin{aligned}
& \text {.........antant } \\
& \text { Gaurand }
\end{aligned}
$$

Gouraud shading

- Problems

- Motion aliasing makes this worse!

Phong shading

- Interpolate normals linearly at each pixel
- Lighting computation at each pixel
- Looks much better

- More expensive
- Only works in graphics hardware (GLSL etc.)

