CS 428: Fall 2010 Introduction to Computer Graphics

Polygonal meshes

Topic overview

- Image formation and OpenGL
- Transformations and viewing
- Polygons and polygon meshes
- 3D model/mesh representations
- Piecewise linear shape approximations
- Illumination and polygon shading
- Modeling and animation
- Rendering

Polygon meshes

- Some objects are flat
- Some objects are smooth \leftarrow approximate!
- Use many planar triangles/quadrilaterals to approximate the underlying smooth surface

Approximating shapes
 with polygons

shape

polygon mesh

(approximated)

Polygon meshes

- Polygon mesh
- Vertices

- All three are redundant, but can lead to more efficient (neighborhood) computation

Representation

- Often just stored in a file
- List of vertices $\left(x_{1}, y_{1}, z_{1}\right) \ldots\left(x_{n}, y_{n}, z_{n}\right)$ followed by
- List of polygons = ordered list of indices $(1,2,3)$...

Vertices
$1(-1,1,1)$
$2(-1,-1,1)$
$3(1,-1,1)$
$4(1,1,1)$
$5(-1,1,-1)$
$6(-1,-1,-1)$
$7(1,-1,-1)$
$8(1,1,-1)$

Polygons
$\{1,2,3,4\}$
$\{8,7,6,5\}$
$\{4,3,7,8\}$
$\{5,1,4,8\}$
$\{5,6,2,1\}$
$\{2,6,7,3\}$
= Indexed face set

Representation

- Example: octahedron

Connectivity

- Vertices and polygons are sufficient for rendering
- When adjacency information is needed
- Edges: 2 vertices
- 1 or 2 polygons, assuming no T-joins

- Vertices store list of adjacent vertices, edges or polygons
- Polygons store list of edges
- Sophisticated data structures exist (CS 523)

Polygon mesh example

2903 vertices 3263 polygons

Polygon normals

- Triangles have a single normal vector
- More than 3 points produces a normal at each vertex
- If all points in a plane

$$
n=\left(p_{1}-p_{2}\right) \times\left(p_{1}-P_{3}\right)
$$

all normals are equal

Polygon normals

- If the polygon is sampled from a surface, we can compute normals analytically
- Disance field $f(x, y, z)=0$... a map from $R^{3} \rightarrow R$
- The gradient ∇f is the (un-normalized) normal at (x, y, z)
- But we can find the normals at the vertices here
- How?

Vertex normals

- Average the normals of adjacent polygons
- For an arbitrary vertex
- Compute the cross product between each two adjacent outgoing edges (= each adj. polygon)
- Sum the resulting vectors into a single vector
- Normalize this vector
- More sophisticated methods exist (CS 523)

Polygon shading

- For now (more details later): normals are used for shading (= computing brightness values)
- One polygon

Polygon shading

- For now (more details later): normals are used for shading (= computing brightness values)
- Multiple polygons

$$
\begin{aligned}
& \text { "smooth shading" } \\
& \text { polygons are shaded } \\
& \text { with gradations of color }
\end{aligned}
$$

Smooth shading

- Find average normal of adjacent polygons

- How to compute?

$$
\begin{aligned}
& \hat{n}_{\text {avg }}=\left(\begin{array}{c}
\left.\sum_{\substack{i \in a j_{j} \\
\text { poligom }}} \hat{n}_{i}\right) \\
\text { normaclize }
\end{array}, ~\right.
\end{aligned}
$$

Smooth shading

- Find average normal of adjacent polygons
- Do we need a list of adjacent polygons?
- Not if we want to compute all avg. normals
- This can be performed from an indexed face set on reading the file

$$
\left[\begin{array}{l}
{\left[\begin{array}{c}
\text { compute } \hat{n}_{i} \text { for each face } \\
\forall \text { nodes } j \\
\left(\hat{n}_{\text {avg }}\right)_{j}=0 \\
\forall \text { faces } k \\
\forall \text { vert lin face } k \\
\left(n_{\text {avg }}\right)_{l}+\hat{n}_{k} \\
\forall \text { nods; } \\
\text { normalize }\left(\hat{n}_{\text {avg }}\right)_{j}
\end{array}\right.}
\end{array}\right.
$$

Mesh rendering styles

Flat (faceted) shading

Smooth (Gouraud) shading

Sphere

Flat
Smooth
Polygons and wireframe

Vertex normals and smooth shading

Creases lost

Normal stored in vertex

Creases retained

Normals stored in polygon (per vertex)

Polygon/surface orientation

- Order of vertices specifies a polygon
- Backwards and forwards = same polygon

$$
\begin{aligned}
& f=\{(1,2,3),(2,3,1),(3,12)\} \\
& b=\{(3,2,1),(2,1,3),(1,3,2)\}
\end{aligned}
$$

- But the normal direction flips

Polygon/surface orientation

- Use right-hand rule to determine normal direction
- Counter clockwise: normal comes out of "slide"

- Convention: list vertices in CCW order
- Mesh should be consistently oriented
- All point out!

Polygon transformation

- Transform points

- Draw polygon using these
- Affine transformations map lines to lines (planes to planes, etc.)

Meshes from smooth surfaces
Tessellation

$$
\begin{aligned}
& x=r \cos u \\
& y=r \sin u \\
& z=h v
\end{aligned}
$$

Coper tubs
$u \in(0,2 \pi)$
$V \in[0,1]$

Meshes from smooth surfaces
Tessellation

Meshes from smooth surfaces
 Tessellation

- What about the seam?

$$
(0 \leftrightarrow 2 \pi)
$$

Meshes from smooth surfaces
Tessellation

- This can get much more complicated

sphere

$$
\begin{gathered}
s(u, v)=\left[\begin{array}{l}
a_{x} \cos u \cos v \\
a_{y} \sin u \cos v \\
a_{2} \sin v
\end{array}\right] \\
u \in[0,2 \pi) \text { long. } r_{1} r_{21}^{r_{3}} \\
v \in\left[-\frac{\pi}{2} \frac{\pi}{2}\right] \text { lat. }
\end{gathered}
$$

Meshes from smooth surfaces
 Tessellation

- This can get much more complicated

Tessellation resolution

- How many points to use?

- How many faces \leftrightarrow how fine is the uv grid

Tessellation resolution

- Triangles vs. quadrilaterals

- Triangles always planar
- Some triangles collapse in sphere
- Not always planar
- Sometimes better for surface modeling

