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Translation

� Translations are affine transformations

� The linear part is the identity matrix

� The 4x4 matrix for the translation by 
vector (x0,y0,z0)

t is given as0 0 0
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Scaling, shearing and rotation

� Affine transformations scaling, shearing and 
rotation leave the origin invariant

� Their translation component is zero

� These are purely linear transformations� These are purely linear transformations

� 3x3 matrices would suffice, if we were only 
interested in these
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Scaling, shearing and rotation

� Homogeneous form
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� The images of the basis vectors (1,0,0)t, 
(0, 1, 0)t, (0, 0, 1)t define the linear 
transformation

� As a simplification, vectors are written 
transposed in the text
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Scaling, shearing and rotation

� Multiplying the canonical coordinate axes 

from the right shows the images of the basis 

vectors in the columns of the matrix
 11131211 1 aaaa
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So, this linear transformation is 

given by
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Scaling
anisotropic

� Scaling S modifies the basis vectors as

� S((1,0,0,)t) = (s1, 0, 0)t

� S((0, 1, 0)t) = (0, s2, 0)t

� S((0, 0, 1)t) = (0, 0, s )t� S((0, 0, 1)t) = (0, 0, s3)t

� Resulting in the following 3x3 linear and 4x4 

homogeneous transformation
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Scaling
isotropic

� The special case s1 = s2 = s3 = smeans equal 

(isotropic) scaling for all coordinate axes

� The homogeneous matrix has the form
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Shearing

� Shearing SH modifies the basis vectors as

� SH((1, 0 , 0)t) = (1, s1, s3)t

� SH((0, 1, 0)t) = (s2, 1, s4)t

� SH((0, 0, 1)t) = (s , s , 1)t� SH((0, 0, 1)t) = (s5, s6, 1)t

� Resulting in the following 3x3 linear and 4x4 

homogeneous transformation
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� Linear transformation

in 3D can be used to 

compute affine 

transformation in 2D

Homogeneous coordinates
Geometric interpretation

transformation in 2D

� Affine translation in 2D 

becomes linear shear

in 3D within the

w = 1 plane (!)
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Rotation

� Rotation Rα with angle α about the z-axis 

modifies the basis vectors as

� Rα((1, 0, 0)t) = ( cos α, sin α, 0)

� Rα((0, 1, 0)t) = (-sin α, cos α, 0)� Rα((0, 1, 0) ) = (-sin α, cos α, 0)

� Rα((0, 0, 1)t) = (0, 0, 1)

� Resulting in the following 3x3 linear and 4x4 

homogeneous transformation
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Rotation

� The following turning angles are positive in a 

right handed coordinate system
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Rotation

� For rotations Rα about the x- and y-axis

� Angle α about the x-axis
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� Angle α about the y-axis
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Rotation about an arbitrary axis

� Rotation R(x,y,z) about the normalized vector 

r = (x,y,z)t with angle α
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Rotation about an arbitrary axis
Computing R

� Define orthonormal basis (r,s,t)

� First basis vector is r

� Second basis vector s is orthogonal to r:

or ( if )
xer
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� Third basis vector t = r × s
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Rotation about an arbitrary axis
Computing R

� Write vectors (r,s,t) into the columns of the 

transformation matrix

� T-matrix is orthogonal and transforms 

� e →r, e →s, e→t. (this is R-1)� ex→r, ey→s, ez→t. (this is R-1)

� For orthogonal matrices A the following holds 

A-1=At

� Therefore: R is constructed by writing the 

vectors (r,s,t) into the rows of the matrix
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Rotation about an arbitrary axis
Computing R

� For clockwise rotation about the vector (x,y,z)
by the angle α, using shorthands s=sin(α), 
c=cos(α) und t=1-cos(α) the resulting matrix 
is given as
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Rotation about an arbitrary point

� Axis of rotation through a point different from 

the origin

� Move center of rotation to the origin

� Perform rotation as previously described� Perform rotation as previously described

� Move center of rotation back
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Rotation about an arbitrary point

� Example

� Rotation in positive direction about an axis 

through the point

(x0, y0, z0) by angle α(x0, y0, z0) by angle α

� The axis of rotation is the z-direction in this 

example
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Euler angles

� Axis angle (previous slides) is preferred over 

Euler angles → Gimbal lock!
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Excursion/aside: quaternions

� 4-dimensional analog to complex numbers

� Multiplication of complex numbers can 

describe orientation and rotation in 2D

� Complex numbers Θ⋅=+= iecibac� Complex numbers

� Multiplication represents a 

similarity transformation
c c e2 2

2= iθ

c c e1 1
1= iθ

c c1 2

θ1θ 2
θ θ1 2+

1

Θ⋅=+= iecibac

( )21

2121

Θ+Θ⋅⋅=⋅ i
ecccc

i
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Excursion/aside: quaternions

� Definition

� Three imaginary numbers: i,j,k

� q = a + bi + cj + dk

� Multiplication rules� Multiplication rules

� i2 = j2 = k2 = -1

� ij = -ji = k

� jk = -kj = i

� ki = -ik = j

� Careful: multiplication is not commutative!
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Excursion/aside: quaternions
Properties

� Quaternions can be split into real and 
imaginary Parts

� Multiplication

( )== vsq
r
, s + v1 i + v2 j + v3 k

� Multiplication

� Conjugate

� Norm
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2
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Rotations and quaternions

� Points in space can be represented as purely 

imaginary quaternions

� Rotation of p about the origin

qp = (0,p) = p1 i + p2 j + p3 k

� Rotation of p about the origin

� qp‘ = qrqpqr
-1, where qi is a unit quaternion

� Inverse

� For unit quaternions (as well as for complex 

numbers)

� The inverse of a unit quaternion is equal to its 

conjugate

qq =−1
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Rotations and quaternions

� Unit quaternions are isomorph to orientations

� Unit quaternions can be expressed as

qr = cos α( ),sin α( )v( )
with unit vector

� qr is equivalent to a rotation of angle 2α
about the axis

r ( ) ( )( )
v
r

qp' = qr qp qr
-1
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Composition of transformations

� We can compose the basic operations
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Composition of transformations

� In general, transformations do not commute!
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Composition of transformations

� In general, transformations do not commute!
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Composition of transformations

� In general, transformations do not commute!
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Composition of transformations

� Only commute in general

� Any two translations

� Two rotations around the same axis

� Any two scales

� Rotation and uniform scale
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How is this implemented?

� Transform points + vectors

� Original geometry (= positions in local coords) 

is left unchanged!

� Computations with transformed versions� Computations with transformed versions

� Use shape representations based on points 

and vectors

� These are preserved under affine transformations
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How is this implemented?

� Line segments

� Affine transformations map lines to lines

� So just transform the vertices (points) and connect 

the transformed points
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How is this implemented?

� Curves and surfaces work too

� Works since shape is built using multiple linear 

interpolations

(transformed curve = curve produced using 

transformed points)

� Some nonlinear deformations work this way
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In OpenGL

� Maintain the “current” affine transformation

� This is simply a single 4x4 matrix

� All specified points (using glVertex(…)) are 

transformed by this matrixtransformed by this matrix

� OpenGL provides transformation functions for 

modifying this matrix
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In OpenGL

� Maintain the “current” affine transformation

� Matrix stack (incl. push and pop operations) to 

maintain a list of matrices

� Top matrix is “current” modelview matrix� Top matrix is “current” modelview matrix
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