
CS 428: Fall 2010

Introduction to

Computer GraphicsComputer Graphics

Geometric Transformations

(continued)

9/20/2010 1Andrew Nealen, Rutgers, 2010

Translation

� Translations are affine transformations

� The linear part is the identity matrix

� The 4x4 matrix for the translation by
vector (x0,y0,z0)

t is given as0 0 0



















+

+

+

=





































=



















111000

100

010

001

1

'

'

'

0

0

0

0

0

0

zz

yy

xx

z

y

x

z

y

x

z

y

x

9/20/2010 2Andrew Nealen, Rutgers, 2010

Scaling, shearing and rotation

� Affine transformations scaling, shearing and
rotation leave the origin invariant

� Their translation component is zero

� These are purely linear transformations� These are purely linear transformations

� 3x3 matrices would suffice, if we were only
interested in these

9/20/2010 3Andrew Nealen, Rutgers, 2010

Scaling, shearing and rotation

� Homogeneous form



















1000

0

0

0

333231

232221

131211

aaa

aaa

aaa

� The images of the basis vectors (1,0,0)t,
(0, 1, 0)t, (0, 0, 1)t define the linear
transformation

� As a simplification, vectors are written
transposed in the text

 1000

()
















=

z

y

x

zyx
t

,,

3 3:A ℜ ℜa

9/20/2010 4Andrew Nealen, Rutgers, 2010

Scaling, shearing and rotation

� Multiplying the canonical coordinate axes

from the right shows the images of the basis

vectors in the columns of the matrix
 11131211 1 aaaa
















 13131211 0 aaaa

So, this linear transformation is

given by

2 1

2 2

− 
 
 

2

2

 
 
 

1

2

− 
 
  0

1

 
 
 

1

0

 
 
 
















=

































31

21

11

333231

232221

131211

0

0

1

a

a

a

aaa

aaa

aaa
















=

































33

23

13

333231

232221

131211

1

0

0

a

a

a

aaa

aaa

aaa
















=

































32

22

12

333231

232221

131211

0

1

0

a

a

a

aaa

aaa

aaa

9/20/2010 5Andrew Nealen, Rutgers, 2010

Scaling
anisotropic

� Scaling S modifies the basis vectors as

� S((1,0,0,)t) = (s1, 0, 0)t

� S((0, 1, 0)t) = (0, s2, 0)t

� S((0, 0, 1)t) = (0, 0, s)t� S((0, 0, 1)t) = (0, 0, s3)t

� Resulting in the following 3x3 linear and 4x4

homogeneous transformation

















3

2

1

00

00

00

s

s

s





































=



















11000

000

000

000

1

'

'

'

3

2

1

z

y

x

s

s

s

z

y

x

9/20/2010 6Andrew Nealen, Rutgers, 2010

Scaling
isotropic

� The special case s1 = s2 = s3 = smeans equal

(isotropic) scaling for all coordinate axes

� The homogeneous matrix has the form





















=



















s

s

s

s

1
000

0100

0010

0001

1000

000

000

000

9/20/2010 7Andrew Nealen, Rutgers, 2010

Shearing

� Shearing SH modifies the basis vectors as

� SH((1, 0 , 0)t) = (1, s1, s3)t

� SH((0, 1, 0)t) = (s2, 1, s4)t

� SH((0, 0, 1)t) = (s , s , 1)t� SH((0, 0, 1)t) = (s5, s6, 1)t

� Resulting in the following 3x3 linear and 4x4

homogeneous transformation

















1

1

1

43

61

52

ss

ss

ss





































=



















11000

01

01

01

1

'

'

'

43

61

52

z

y

x

ss

ss

ss

z

y

x

9/20/2010 8Andrew Nealen, Rutgers, 2010

� Linear transformation

in 3D can be used to

compute affine

transformation in 2D

Homogeneous coordinates
Geometric interpretation

transformation in 2D

� Affine translation in 2D

becomes linear shear

in 3D within the

w = 1 plane (!)

Andrew Nealen, Rutgers, 2010 9/20/2010 9

















+

+

=
































=

















11100

10

01

1

'

'

0

0

0

0

yy

xx

y

x

y

x

y

x

Rotation

� Rotation Rα with angle α about the z-axis

modifies the basis vectors as

� Rα((1, 0, 0)t) = (cos α, sin α, 0)

� Rα((0, 1, 0)t) = (-sin α, cos α, 0)� Rα((0, 1, 0)) = (-sin α, cos α, 0)

� Rα((0, 0, 1)t) = (0, 0, 1)

� Resulting in the following 3x3 linear and 4x4

homogeneous transformation















 −

100

0cossin

0sincos

αα
αα



































 −

=



















11000

0100

00cossin

00sincos

1

'

'

'

z

y

x

z

y

x

αα
αα

9/20/2010 10Andrew Nealen, Rutgers, 2010

Rotation

� The following turning angles are positive in a

right handed coordinate system

9/20/2010 11Andrew Nealen, Rutgers, 2010

Rotation

� For rotations Rα about the x- and y-axis

� Angle α about the x-axis

















−
=








0sincos0

0001

'

'

y

x

y

x

αα

� Angle α about the y-axis






















−
=










 11000

0cossin0

0sincos0

1

'

'

z

y

z

y

αα
αα





































−
=



















11000

0cos0sin

0010

0sin0cos

1

'

'

'

z

y

x

z

y

x

αα

αα

9/20/2010 12Andrew Nealen, Rutgers, 2010

Rotation about an arbitrary axis

� Rotation R(x,y,z) about the normalized vector

r = (x,y,z)t with angle α

z z z
R R-1

x

y

z

r
s

t

α

x

y

z

r s

t

Rα(x)
x

y

r
s

t

α
R R-1

R(x,y,z)=R
-1Rα(x)R

9/20/2010 13Andrew Nealen, Rutgers, 2010

Rotation about an arbitrary axis
Computing R

� Define orthonormal basis (r,s,t)

� First basis vector is r

� Second basis vector s is orthogonal to r:

or (if)
xer

s
×

= er
yer

s
×

=

� Third basis vector t = r × s

x

y

z

r
s

t

α

x

y

z

r s

t

Rα(x)
x

y

z

r
s

t

α
R R-1

or (if)
x

x

er

er
s

×
×

=
xer

y

y

er
s

×
=

9/20/2010 14Andrew Nealen, Rutgers, 2010

Rotation about an arbitrary axis
Computing R

� Write vectors (r,s,t) into the columns of the

transformation matrix

� T-matrix is orthogonal and transforms

� e →r, e →s, e→t. (this is R-1)� ex→r, ey→s, ez→t. (this is R-1)

� For orthogonal matrices A the following holds

A-1=At

� Therefore: R is constructed by writing the

vectors (r,s,t) into the rows of the matrix

9/20/2010 15Andrew Nealen, Rutgers, 2010

Rotation about an arbitrary axis
Computing R

� For clockwise rotation about the vector (x,y,z)
by the angle α, using shorthands s=sin(α),
c=cos(α) und t=1-cos(α) the resulting matrix
is given as

() ,

1000

0

0

0

2

2

2

,,





















+⋅⋅+⋅⋅⋅−⋅⋅

⋅−⋅⋅+⋅⋅+⋅⋅

⋅+⋅⋅⋅−⋅⋅+⋅

=
cztxszytyszxt

xszytcytzsyxt

yszxtzsyxtcxt

R zyx

9/20/2010 16Andrew Nealen, Rutgers, 2010

Rotation about an arbitrary point

� Axis of rotation through a point different from

the origin

� Move center of rotation to the origin

� Perform rotation as previously described� Perform rotation as previously described

� Move center of rotation back

x

y

z
r

s

t

α

x

y

z

x

y

z
T T-1

r
s

t

α

r
s

t

α

R(r)

9/20/2010 17Andrew Nealen, Rutgers, 2010

Rotation about an arbitrary point

� Example

� Rotation in positive direction about an axis

through the point

(x0, y0, z0) by angle α(x0, y0, z0) by angle α

� The axis of rotation is the z-direction in this

example

p
z

y

x

z

y

x

p ⋅



















−

−

−

⋅

















 −

⋅



















=′

1000

100

010

001

1000

0100

00cossin

00sincos

1000

100

010

001

0

0

0

0

0

0

αα
αα

9/20/2010 18Andrew Nealen, Rutgers, 2010

Euler angles

� Axis angle (previous slides) is preferred over

Euler angles → Gimbal lock!

Andrew Nealen, Rutgers, 2010 9/20/2010 19

Excursion/aside: quaternions

� 4-dimensional analog to complex numbers

� Multiplication of complex numbers can

describe orientation and rotation in 2D

� Complex numbers Θ⋅=+= iecibac� Complex numbers

� Multiplication represents a

similarity transformation
c c e2 2

2= iθ

c c e1 1
1= iθ

c c1 2

θ1θ 2
θ θ1 2+

1

Θ⋅=+= iecibac

()21

2121

Θ+Θ⋅⋅=⋅ i
ecccc

i

9/20/2010 20Andrew Nealen, Rutgers, 2010

Excursion/aside: quaternions

� Definition

� Three imaginary numbers: i,j,k

� q = a + bi + cj + dk

� Multiplication rules� Multiplication rules

� i2 = j2 = k2 = -1

� ij = -ji = k

� jk = -kj = i

� ki = -ik = j

� Careful: multiplication is not commutative!

9/20/2010 21Andrew Nealen, Rutgers, 2010

Excursion/aside: quaternions
Properties

� Quaternions can be split into real and
imaginary Parts

� Multiplication

()== vsq
r
, s + v1 i + v2 j + v3 k

� Multiplication

� Conjugate

� Norm

()211221212121 , vvvsvsvvssqq
rrrrrr

×++⋅−=

()vsq
r

−= ,

2

3

2

2

2

1

2 vvvsq +++=

9/20/2010 22Andrew Nealen, Rutgers, 2010

Rotations and quaternions

� Points in space can be represented as purely

imaginary quaternions

� Rotation of p about the origin

qp = (0,p) = p1 i + p2 j + p3 k

� Rotation of p about the origin

� qp‘ = qrqpqr
-1, where qi is a unit quaternion

� Inverse

� For unit quaternions (as well as for complex

numbers)

� The inverse of a unit quaternion is equal to its

conjugate

qq =−1

9/20/2010 23Andrew Nealen, Rutgers, 2010

Rotations and quaternions

� Unit quaternions are isomorph to orientations

� Unit quaternions can be expressed as

qr = cos α(),sin α()v()
with unit vector

� qr is equivalent to a rotation of angle 2α
about the axis

r () ()()
v
r

qp' = qr qp qr
-1

9/20/2010 24Andrew Nealen, Rutgers, 2010

Composition of transformations

� We can compose the basic operations

Andrew Nealen, Rutgers, 2010 9/20/2010 25

Composition of transformations

� In general, transformations do not commute!

Andrew Nealen, Rutgers, 2010 9/20/2010 26

Composition of transformations

� In general, transformations do not commute!

Andrew Nealen, Rutgers, 2010 9/20/2010 27

Composition of transformations

� In general, transformations do not commute!

Andrew Nealen, Rutgers, 2010 9/20/2010 28

Composition of transformations

� Only commute in general

� Any two translations

� Two rotations around the same axis

� Any two scales

� Rotation and uniform scale

Andrew Nealen, Rutgers, 2010 9/20/2010 29

How is this implemented?

� Transform points + vectors

� Original geometry (= positions in local coords)

is left unchanged!

� Computations with transformed versions� Computations with transformed versions

� Use shape representations based on points

and vectors

� These are preserved under affine transformations

Andrew Nealen, Rutgers, 2010 9/20/2010 30

How is this implemented?

� Line segments

� Affine transformations map lines to lines

� So just transform the vertices (points) and connect

the transformed points

Andrew Nealen, Rutgers, 2010 9/20/2010 31

How is this implemented?

� Curves and surfaces work too

� Works since shape is built using multiple linear

interpolations

(transformed curve = curve produced using

transformed points)

� Some nonlinear deformations work this way

Andrew Nealen, Rutgers, 2010 9/20/2010 32

In OpenGL

� Maintain the “current” affine transformation

� This is simply a single 4x4 matrix

� All specified points (using glVertex(…)) are

transformed by this matrixtransformed by this matrix

� OpenGL provides transformation functions for

modifying this matrix

Andrew Nealen, Rutgers, 2010 9/20/2010 33

In OpenGL

� Maintain the “current” affine transformation

� Matrix stack (incl. push and pop operations) to

maintain a list of matrices

� Top matrix is “current” modelview matrix� Top matrix is “current” modelview matrix

Andrew Nealen, Rutgers, 2010 9/20/2010 34

