CS 428: Fall 2010 Introduction to Computer Graphics

Geometric Transformations
 (continued)

Translation

- Translations are affine transformations
- The linear part is the identity matrix
- The 4×4 matrix for the translation by vector $\left(x_{0}, y_{0}, z_{0}\right)^{\mathrm{t}}$ is given as

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & x_{0} \\
0 & 1 & 0 & y_{0} \\
0 & 0 & 1 & z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x+x_{0} \\
y+y_{0} \\
z+z_{0} \\
1
\end{array}\right]
$$

Scaling, shearing and rotation

- Affine transformations scaling, shearing and rotation leave the origin invariant
- Their translation component is zero
- These are purely linear transformations
- 3×3 matrices would suffice, if we were only interested in these

Scaling, shearing and rotation

- Homogeneous form

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The images of the basis vectors $(1,0,0)^{t}$, $(0,1,0)^{t},(0,0,1)^{t}$ define the linear transformation
- As a simplification, vectors are written $(x, y, z)^{\prime}=\binom{x}{y}$ transposed in the text

Scaling, shearing and rotation

- Multiplying the canonical coordinate axes from the right shows the images of the basis vectors in the columns of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]
$$

So, this linear transformation is given by

$$
\left[\begin{array}{cc}
2 & -1 \\
2 & 2
\end{array}\right]
$$

Scaling anisotropic

- Scaling S modifies the basis vectors as
- $\mathbf{S}\left((1,0,0,)^{t}\right)=\left(s_{1}, 0,0\right)^{t}$
- $\mathbf{S}\left((0,1,0)^{t}\right)=\left(0, s_{2}, 0\right)^{t}$

- S($\left.(0,0,1)^{t}\right)=\left(0,0, s_{3}\right)^{t}$
- Resulting in the following 3×3 linear and 4×4 homogeneous transformation

$$
\left(\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & 0 \\
0 & 0 & s_{3}
\end{array}\right) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{1} & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 \\
0 & 0 & s_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Scaling
 isotropic

- The special case $s_{1}=s_{2}=s_{3}=s$ means equal (isotropic) scaling for all coordinate axes
- The homogeneous matrix has the form

$$
\left[\begin{array}{cccc}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & s & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{s}
\end{array}\right]
$$

Shearing

- Shearing SH modifies the basis vectors as
- $\mathbf{S H}\left((1,0,0)^{\mathrm{t}}\right)=\left(1, \mathrm{~s}_{1}, \mathrm{~s}_{3}\right)^{\mathrm{t}}$
- SH $\left((0,1,0)^{t}\right)=\left(s_{2}, 1, s_{4}\right)^{t}$
- SH $\left((0,0,1)^{t}\right)=\left(s_{5}, s_{6}, 1\right)^{t}$

- Resulting in the following 3×3 linear and 4×4 homogeneous transformation

$$
\left(\begin{array}{ccc}
1 & s_{2} & s_{5} \\
s_{1} & 1 & s_{6} \\
s_{3} & s_{4} & 1
\end{array}\right) \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & s_{2} & s_{5} & 0 \\
s_{1} & 1 & s_{6} & 0 \\
s_{3} & s_{4} & 1 & 0 \\
0 & 0 & 0 & 1 / 20010
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Homogeneous coordinates

Geometric interpretation

- Linear transformation in 3D can be used to compute affine transformation in 2D
- Affine translation in 2D
 becomes linear shear in 3D within the w = 1 plane (!)

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & x_{0} \\
0 & 1 & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+x_{0} \\
y+y_{0} \\
1
\end{array}\right]
$$

Rotation

- Rotation \mathbf{R}_{α} with angle α about the z-axis modifies the basis vectors as
- $\mathbf{R}_{\alpha}\left((1,0,0)^{\mathrm{t}}\right)=(\cos \alpha, \sin \alpha, 0)$
- $\mathbf{R}_{\alpha}\left((0,1,0)^{\mathrm{t}}\right)=(-\sin \alpha, \cos \alpha, 0)$
- $\mathbf{R}_{\alpha}\left((0,0,1)^{\mathrm{t}}\right)=(0,0,1)$

- Resulting in the following 3×3 linear and ${ }^{\text {e }} 4 \times 4$ homogeneous transformation

$$
\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation

- The following turning angles are positive in a right handed coordinate system

Rotation

- For rotations R_{α} about the x - and y-axis
- Angle α about the x-axis

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha & 0 \\
0 & \sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Angle α about the y-axis

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \alpha & 0 & \sin \alpha & 0 \\
0 & 1 & 0 & 0 \\
-\sin \alpha & 0 & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about an arbitrary axis

- Rotation $\mathrm{R}(x, y, z)$ about the normalized vector $\mathbf{r}=(x, y, z)^{\mathrm{t}}$ with angle α

Rotation about an arbitrary axis

Computing \mathbf{R}

- Define orthonormal basis (r,s,t)
- First basis vector is \mathbf{r}
- Second basis vector \mathbf{s} is orthogonal to \mathbf{r} :

$$
s=\frac{r \times e_{x}}{\left\|r \times e_{x}\right\|} \quad \text { or }\left(\text { if } r \| e_{x}\right) \quad s=\frac{r \times e_{y}}{\left\|r \times e_{y}\right\|}
$$

- Third basis vector $\mathbf{t}=\mathbf{r} \times \mathbf{s}$

Rotation about an arbitrary axis

Computing \mathbf{R}

- Write vectors ($\mathbf{r}, \mathbf{s}, \mathbf{t}$) into the columns of the transformation matrix
- T-matrix is orthogonal and transforms
- $\mathbf{e}_{x} \rightarrow \mathbf{r}, \mathbf{e}_{y} \rightarrow \mathbf{S}, \mathbf{e}_{z} \rightarrow \mathbf{t}$. (this is R^{-1})
- For orthogonal matrices A the following holds $A^{-1}=A^{t}$
- Therefore: R is constructed by writing the vectors ($\mathbf{r}, \mathbf{s}, \mathbf{t}$) into the rows of the matrix

Rotation about an arbitrary axis

Computing \mathbf{R}

- For clockwise rotation about the vector (x, y, z) by the angle α, using shorthands $s=\sin (\alpha)$, $c=\cos (\alpha)$ und $t=1-\cos (\alpha)$ the resulting matrix is given as

$$
R_{(x, y, z)}=\left[\begin{array}{cccc}
t \cdot x^{2}+c & t \cdot x \cdot y-s \cdot z & t \cdot x \cdot z+s \cdot y & 0 \\
t \cdot x \cdot y+s \cdot z & t \cdot y^{2}+c & t \cdot y \cdot z-s \cdot x & 0 \\
t \cdot x \cdot z-s \cdot y & t \cdot y \cdot z+s \cdot x & t \cdot z^{2}+c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation about an arbitrary point

- Axis of rotation through a point different from the origin
- Move center of rotation to the origin
- Perform rotation as previously described
- Move center of rotation back

Rotation about an arbitrary point

- Example
- Rotation in positive direction about an axis through the point

```
( }\mp@subsup{x}{0}{},\mp@subsup{y}{0}{},\mp@subsup{z}{0}{})\mathrm{ by angle }
```

- The axis of rotation is the z-direction in this example

$$
p^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & x_{0} \\
0 & 1 & 0 & y_{0} \\
0 & 0 & 1 & z_{0} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot p
$$

Euler angles

Euler angles: $\theta_{x}, \theta_{y}, \theta_{z}$ (in a particular order)

- Axis angle (previous slides) is preferred over Euler angles \rightarrow Gimbal lock!
$R_{z} R_{Y} R_{X}$

now, $R_{x}+R_{2}$ are redundant!

Excursion/aside: quaternions

- 4-dimensional analog to complex numbers
- Multiplication of complex numbers can describe orientation and rotation in 2D
- Complex numbers $c=a+i b=|c| \cdot e^{i \theta}$
- Multiplication represents a similarity transformation

$$
c_{1} \cdot c_{2}=\left|c_{1}\right| \cdot\left|c_{2}\right| \cdot e^{i\left(\Theta_{1}+\Theta_{2}\right)}
$$

Excursion/aside: quaternions

- Definition
- Three imaginary numbers: i, j, k
- $\mathbf{q}=a+b i+c j+d k$
- Multiplication rules

$$
\begin{aligned}
& \text { - } i^{2}=j^{2}=k^{2}=-1 \\
& \text { - } i j=-j i=k \\
& j k=-k j=i \\
& k i=-i k=j
\end{aligned}
$$

- Careful: multiplication is not commutative!

Excursion/aside: quaternions

Properties

- Quaternions can be split into real and imaginary Parts

$$
q=(s, \vec{v})=s+v_{1} \mathrm{i}+v_{2} \mathrm{j}+v_{3} \mathrm{k}
$$

- Multiplication

$$
q_{1} q_{2}=\left(s_{1} s_{2}-\vec{v}_{1} \cdot \vec{v}_{2}, s_{1} \vec{v}_{2}+s_{2} \vec{v}_{1}+\vec{v}_{1} \times \vec{v}_{2}\right)
$$

- Conjugate

$$
\bar{q}=(s,-\vec{v})
$$

- Norm

$$
\|q\|=\sqrt{s^{2}+v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Rotations and quaternions

- Points in space can be represented as purely imaginary quaternions

$$
\mathbf{q}_{p}=(0, \mathbf{p})=p_{1} \mathrm{i}+p_{2} \mathrm{j}+p_{3} \mathrm{k}
$$

- Rotation of \mathbf{p} about the origin
- $\mathbf{q}_{\mathbf{p}}{ }^{\text {b }}=\mathbf{q}_{\mathbf{r}} \mathbf{q}_{\mathbf{p}} \mathbf{q}_{\mathbf{r}}{ }^{-1}$, where \mathbf{q}_{i} is a unit quaternion
- Inverse
- For unit quaternions (as well as for complex numbers) $q^{-1}=\bar{q}$
- The inverse of a unit quaternion is equal to its conjugate

Rotations and quaternions

- Unit quaternions are isomorph to orientations
- Unit quaternions can be expressed as

$$
\mathbf{q}_{r}=(\cos (\alpha), \sin (\alpha) \mathbf{v})
$$

with unit vector \vec{v}

- $\mathbf{q}_{\mathbf{r}}$ is equivalent to a rotation of angle 2α about the axis

$$
\mathbf{q}_{\mathbf{p}^{\prime}}=\mathbf{q}_{\mathbf{r}} \mathbf{q}_{\mathbf{p}} \mathbf{q}_{\mathbf{r}}^{-1}
$$

Composition of transformations

- We can compose the basic operations

$$
\begin{array}{r}
M=M_{1} M_{2} \quad \text { (matrix ult.) } \\
T R_{z} S=\left[\begin{array}{cccc}
s_{x} \cos \theta_{z} & -s_{y} \sin \theta_{z} & 0 & t_{x} \\
s_{x} \sin \theta_{z} & s_{y} \cos \theta_{z} & 0 & t_{y} \\
0 & 0 & s_{z} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

Composition of transformations

- In general, transformations do not commute!

Composition of transformations

- In general, transformations do not commute!

Composition of transformations

- In general, transformations do not commute!

$$
\begin{aligned}
& T R=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right] \\
& R T=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta & \left.\begin{array}{c}
\cos \theta t_{x}-\sin \theta t_{y} \\
\sin \theta t_{x}+\cos \theta t_{y}
\end{array}\right]
\end{array}\right] \quad \text { rotated }\binom{t_{x}}{t_{y}}
\end{aligned}
$$

Composition of transformations

- Only commute in general
- Any two translations
- Two rotations around the same axis
- Any two scales
- Rotation and uniform scale

How is this implemented?

- Transform points + vectors
- Original geometry (= positions in local coords) is left unchanged!
- Computations with transformed versions
- Use shape representations based on points and vectors
- These are preserved under affine transformations

How is this implemented?

- Line segments

- Affine transformations map lines to lines
- So just transform the vertices (points) and connect the transformed points

How is this implemented?

- Curves and surfaces work too

- Works since shape is built using multiple linear interpolations
(transformed curve = curve produced using transformed points)
- Some nonlinear deformations work this way

In OpenGL

- Maintain the "current" affine transformation
- This is simply a single 4×4 matrix
- All specified points (using glVertex (...)) are transformed by this matrix
- OpenGL provides transformation functions for modifying this matrix

$$
\left.\begin{array}{l}
g \mid \text { Load Identity }() \\
g \mid \text { Translate } f(x, y, z) \\
g \mid \text { Rotatef (angle, } x, y, z) \\
g \mid S_{\text {cale }}(x, y, z)
\end{array}\right\} \quad \begin{array}{r}
\text { right multiplicution } \\
M_{1} 2 \\
M_{1} M_{2}^{2}
\end{array}
$$

In OpenGL

- Maintain the "current" affine transformation
- Matrix stack (incl. push and pop operations) to maintain a list of matrices
- Top matrix is "current" modelview matrix

