CS 428: Fall 2010
Introduction to

Computer Graphics

Geometric Transformations

(continued)

Andrew Nealen, Rutgers, 2010 9/20/2010

Translation

®» Translations are affine transformations
" The linear part is the identity matrix diﬂ
|

" The 4x4 matrix for the translation by
vector (x,,y,,Z,)" IS given as

oo O =

Andrew Nealen, Rutgers, 2010

oS O = O

oS = O O

X0
Yo
2y

1

— N < X

9/20/2010

X+ X,

Y+
z+z,

1

f"Q%ﬁaq_

Fs (e

Scaling, shearing and rotation

= Affine transformations scaling, shearing and
rotation leave the origin invariant

® Their translation component is zero
" These are purely linear transformations

" 3x3 matrices would suffice, if we were only
interested in these

1 | -

y

A A A

Andrew Nealen, Rutgers, 2010 9/20/2010 3

Scaling, shearing and rotation

" Homogeneous form

a,, d;, a;

as; ds; Ay

0 0 0

0
Uy Ay Gy 0
0
1

" The images of the basis vectors (1,0,0)t,
(0, 1, 0)%, (O, O, 1)t define the linear
transformation

" As a simplification, vectors are written (., .y H
transposed in the text 2

Scaling, shearing and rotation

" Multiplying the canonical coordinate axes
from the right shows the images of the basis
vectors in the columns of the matrix

a, a, a;]|1 a, a, a, a;|0 a;
a, a,, ay|0|=|a, Ay Gy Ay | 0]=]ay
| d3; dy; a33__0_ | A3 | | 431 4y a33__1_ | A3

_ - e - So, this linear transformation is
ay Gy a0 ap 4 : b
given by

(a; ay ay; ||0] [ay, | B} |:2 _1}
2 2

n.
>

>

Scaling

anisotropic

" Scaling S modifies the basis vectors as
" 5((1,0,0,)") = (s, 0, O)'

= 5((0, 1,0)Y) =(0,s,, 0)t =

= S((0, 0, 1)) = (0, O, s5)"

" Resulting in the following 3x3 linear and 4x4
homogeneous transformation

(s,
0

L0

0 0)
s, 0
0 sy

'

X

y'
Z'
1

)

=
e

=T 4

S

¥

¥

& x

0O O

0
0
0
1

— N e X

Scaling

iIsotropic

" The special case s; = s, = 5; = s means equal
(isotropic) scaling for all coordinate axes

" The homogeneous matrix has the form

_SOOO_IOOO
0 s 0 0 0O 1 0 O
00 s 0l |00 10

1
000 1] |00 0~

Shearing

" Shearing SH modifies the basis vectors as
" SH((1,0,0)t) = (1, s,, s5)t 7L F
" SH((0, 1, 0)t) = (s,, 1, 5,)" L g ﬁm
= SH((0, 0, 1)!) = (se, S, 1)t T x

" Resulting in the following 3x3 linear and 4x4
homogeneous transformation

X' 1 s, s O x

(1 s, s | 2o
| Vi ols Losg Ofy
! %6 ' s, s, 1 0z
3 S 1y 1| {0 0 0 11|

Homogeneous coordinates

Geometric interpretation

® Linear transformation A
in 3D can be used to L /”""’47@ ‘o
compute affine wel ST T,

transformation in 2D weo /[Vel

= Affine translation in 2D e
becomes linear shear

in 3D within the x| 1 0 x, [x] [x+x
w =1 plane (!) V=10 1 y |lv|=|y+y,
1 _O 0 1__1_ 1]

= Rotation R, with angle a. about the z-axis

modifies the basis vectors as

= R,((1,0,0)) =(cos a, sin a, 0)
= R,((O, 1, 0)") = (-sin a, cos a, 0)
= R ((0,0,1))=(0,0,1)

COS o

Rotation

4
sino {52

" Resulting in the following 3x3
homogeneous transformation

(cosa
SIn &
. 0

—sina 0)
cosa O
0 1)

'

X

y|
Z'
1

COS ¥

Sin o
0
0

—sino
cosa
0
0

o = O O

Rotation

" The following turning angles are positive in a
right handed coordinate system

!
z

b

s

Rotation

" For rotations R, about the x- and y-axis

" Angle o about the x-axis

1 0
0 cosa
0 sina
0 0

0
—sina
cosa
0

" Angle o about the y-axis

y'
Z!
1

0

0

cosa O

1

0

Sin &
0

—sina 0 cosa

0

_—o O O

_—0 O O

Rotation about an arbitrary axis

" Rotation R(x,y,z) about the normalized vector
r = (x,y,z)' with angle a

X t X Roc(X) x t
Ry, =R'R ()R

Andrew Nealen, Rutgers, 2010 9/20/2010 13

Rotation about an arbitrary axis
Computing R

" Define orthonormal basis (r,s,t)
= First basis vectorisr

" Second basis vector s is orthogonal tor:

rxe rxey

X
or ifl’e S=7—
(e 2 e]

\)

e,
" Third basis vectort=r x s

A
A
Z
V4 R | R-l

Rotation about an arbitrary axis
Computing R

= Write vectors (r,s,t) into the columns of the
transformation matrix

" T-matrix is orthogonal and transforms
" e, T, e—>s, et (thisisR)
" For orthogonal matrices A the following holds
A—let
" Therefore: R is constructed by writing the
vectors (r,s,t) into the rows of the matrix

Rotation about an arbitrary axis
Computing R

" For clockwise rotation about the vector (x,y,z)
by the angle a, using shorthands s=sin(a.),
c=cos(a) und =1-cos(a) the resulting matrix
IS given as

t-x"+c t-X-y—Sz t-xXx-z+s-y 0
t-x-y+s-z t-y+c t-yz—s-x 0
t-X-z2—Sy t-y-z+s-x t-z+c 0

0 0 0 1

Rotation about an arbitrary point

" Axis of rotation through a point different from
the origin
" Move center of rotation to the origin
" Perform rotation as previously described
" Move center of rotation back

A ZA
z 1 Z] o r
T T
a L - > S N
S ™ o r
S

Rotation about an arbitrary point

" Example

" Rotation in positive direction about an axis
through the point

(X0, Vo> Zo) by angle a
= The axis of rotation is the z-direction in this

example
1 0 0 x,|[cose¢ —-sina O O0][1 0 0 -x,]
, |01 0 y,||sine cosa 0 0|0 1 0 —y,
P = O O 1 ZO O 0 1 O 0 O 1 _ZO P
000 1]] O 0 0 1/{0 00 1

Euler angles

y, /
Fu‘Ef anﬂ ‘*ES . @k Jéy J @3 C"H G Pnr‘l’igu’nr arJer)

= Axis angle (previous slides) is preferred over
Euler angles - Gimbal lock!

Y
Rz.Ry Ry oty 9 fow Ry ¥Ry are
X (?Junan+!
o —22

-2

Andrew Nealen, Rutgers, 2010 9/20/2010 19

Excursion/aside: quaternions

4-dimensional analog to complex numbers

Multiplication of complex numbers can
describe orientation and rotation in 2D

Complex numbers c=a+ib=|c-€*

Multiplication represents a

similarity transforma

cl-czz‘cl‘-‘cz‘-e

tion

i(®1+@2)

1%

: =lo,fe”
C2 - C2€ ”
1
C =‘cl‘e 1
1 2 91%/

I
1

Excursion/aside: quaternions

" Definition
" Three imaginary numbers: ij,k
"q=a+t+bi+ctdk
" Multiplication rules
- i2:j2:k2:-1

= ij=-ji=k
w jk=-kj=i
w ki =-ik=

= Careful: multiplication is not commutative!

Excursion/aside: quaternions

Quaternions can be split into real and

Imaginary Parts

q:(s,ﬁ):s+v1i+v2j+v3k

Multiplication

q.9, = (S1S2 — V"V, 8V, +S2V1 + vV, X Vz)

Conjugate

Norm

Properties

Rotations and quaternions

" Points in space can be represented as purely
Imaginary quaternions
q,=(0.p)=p;1*p,]+psk
= Rotation of p about the origin
"q, = qrqpqr'l, where (; is a unit quaternion
" |nverse

" For unit quaternions (as well as for complex
numbers) ¢7' =g

" The inverse of a unit quaternion is equal to its
conjugate

Rotations and quaternions

" Unit quaternions are isomorph to orientations
" Unit quaternions can be expressed as

q, = (cos(a), sin(a)v)
with unit vector v

" (, is equivalent to a rotation of angle 2a
about the axis

d4, = 9,9, 9,

Composition of transformations

= We can compose the basic operations

M = M; MEL (MwFrr'r m:.tf{,)

]

rsx (oS Cp-z "_ST Si Cﬂl O 6},
TRZ C = | Sxsin & Sy cocd, © €

O ') 51-&,

© 1

rll

_ © o

)

Andrew Nealen, Rutgers, 2010 9/20/2010 25

Composition of transformations

" |n general, transformations do not commute!

ﬁ - 2, Lc\ (k)
L - 8 - x

Composition of transformations

" |n general, transformations do not commute!

ﬁ - 2, Lc\ (k)
L - 8 - x

R T ,
(&/ - (TR
i e Q2

Composition of transformations

" |n general, transformations do not commute!

r(",ﬂ_& &‘ — J‘EHCQ {_-x _
T R = [sin & cos & &T (—E-,.;\
© 2 Fa+“+€£ t

Andrew Nealen, Rutgers, 2010 9/20/2010 28

Composition of transformations

" Only commute in general

= Any two translations
= Two rotations around the same axis
= Any two scales

= Rotation and uniform scale

How is this implemented?

" Transform points + vectors

* Original geometry (= positions in local coords)
is left unchanged!

" Computations with transformed versions

" Use shape representations based on points
and vectors

" These are preserved under affine transformations

How is this implemented?

" Line segments

= Affine transformations map lines to lines

= So just transform the vertices (points) and connect
the transformed points

How is this implemented?

= Curves and surfaces work too

’E_F___Hcfm-ﬁm{ Piin fe -i“FtE'trl{ff Curiye

" -
e @

'4

" Works since shape is built using multiple linear
interpolations
(transformed curve = curve produced using
transformed points)

" Some nonlinear deformations work this way

In OpenGL

= Maintain the “current” affine transformation
" This is simply a single 4x4 matrix

= All specified points (using glvertex(..)) are
transformed by this matrix

" OpenGL provides transformation functions for
modifying this matrix
9l Load Tdentity €

j\TFanS[a+e-P<XJ Y, 2)
jll‘?o{--ﬁ-"’t{(ﬂ"jle.} x,y/—g) Mf
j‘ SCG./E ‘F(K} Y/2> HfM&

In OpenGL

= Maintain the “current” affine transformation

= Matrix stack (incl. push and pop operations) to
maintain a list of matrices

" Top matrix is “current” modelview matrix

-‘*f’"ayu ;mf'M(J,
c!r“aw _c.“omm{'ftﬁd? ()

PML(Cans i ""\"()
/ ’) e e ()

S ame
froms. k,;PG p(J

f(ef’fo CJ&"AM{M& fd'b*-e,'//d\r\"lﬁv ()

