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Topic overview

� Image formation and OpenGL (last week)

� Modeling the image formation process

� OpenGL primitives, OpenGL state machine

� Transformations and viewing� Transformations and viewing

� Polygons and polygon meshes

� Programmable pipelines

� Modeling and animation

� Rendering
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Topic overview

� Image formation and OpenGL

� Transformations and viewing (next weeks)

� Linear algebra review, Homogeneous coordinates

� Geometric + projective transformations� Geometric + projective transformations

� Viewing, Viewports, Clipping

� Polygons and polygon meshes

� Programmable pipelines

� Modeling and animation

� Rendering
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Transformations in CG

� Specify placement of objects in the world

� relative to the configuration in which they are 

defined

� Allow for reuse of objects � Allow for reuse of objects 

in different places, sizes

� Specify the camera 

position

� Specify the camera model

(projection)
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Transformations in CG

� The “where” is specified by translations and 

rotations (= rigid body motions)

� Shape changes include

� For now we will only use linear deformations

� Linear algebra!
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Representations in CG

� Computations should not depend on 

coordinate system (such as midpoint/origin)

� Need careful accounting of points and vectors

� Both              (3 tuples of floating point values)
3ℜ∈� Both              (3 tuples of floating point values)

� Vectors

� Displacements, velocities, directions, trajectories, 

surface normals, etc.

� Points

� Locations!
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Vector/point operations

� Vector + vector = vector

� Point + vector = point

� Point + point = invalid!

� Street address analogy

� Point – point = vector

� Works!
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Vector review

� [p + q]i = pi + qi addition

� [s p]i = s ∙ pi scalar multiplication

� || p || = sqrt[ (pi)
2 ] length
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Vector review

� p ∙ q = Σ pi ∙ qi dot product

� Normalization
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Linear combination + Basis

� Linear combination

� λ1 ∙ v1 + λ2 ∙ v2 + … + λn ∙ vn with λi∈ R

� Linear independence of vectors v1, …, vn

� λ ∙ v + … + λ ∙ v = 0   only when λ = … = λ = 0� λ1 ∙ v1 + … + λn ∙ vn = 0   only when λi = … = λ n = 0

� Basis of n-dimensions is a set of n linearly 

independent vectors

� Every vector in Rn has a unique set of λ’s to 

represent it → Cartesian coordinates
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Inner (dot) product

� Defined for vectors:
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Representation of a plane 

in 3D space

� A plane π is defined by a normal n and one 

point in the plane p0.

� A point q ∈ plane  ⇔ < q – p0 , n > = 0

� The normal n is perpendicular to all vectors in � The normal n is perpendicular to all vectors in 

the plane
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Distance between point and plane

� Geometric way:

� Project (q - p0) onto n!
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Coordinates

� Connect drawing plane/space with R2 or R3

� Coordinate origin and axes are problem 

specific

� Example: orthogonal coordinates in the lower � Example: orthogonal coordinates in the lower 

corner of this room

� Affine spaces have

� No fixed origin

� No fixed axes

� (which is not the case in linear spaces)
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Coordinates
Affine space

� “An affine space is a vector space that's 

forgotten its origin” – John Baez

� In R3, the origin, lines and planes through the 

origin and the whole space are linear origin and the whole space are linear 

� points, lines and planes in general as well as the 

whole space are the affine subspaces.

Linear subspace Affine subspace
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Primitives
Points
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Primitives
Lines
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Primitives
Triangles
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Primitives
Shapes

9/15/2010 21Andrew Nealen, Rutgers, 2010



Primitives
Shapes … are tessellated
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Primitives
Positioning

� Absolute coordinates?
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Primitives
Positioning

� Transformation + 

relative coordinates

� Translation

� Rotation

� Scaling

� Shearing

� Affine maps / 

Transformations!
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Affine maps
Affine combinations

� The set

is an affine combination of vectors v (or of  
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Affine maps 
Barycentric coordinates

� Given and affine space A with coordinate 

system B={p0,…pn}

� For a point                                  with

the λ are known as barycentric coordinates
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� Physical interpretation: 

� Points  pi have mass λi → p ist the centroid (= center of 

mass)
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Affine maps
Convex hull

� The set

is the convex hull co{p0,...,pn} of points p0,...,pn

{ }








=≥=⋅== ∑ ∑
= =

n

i

n

i

iiiin niundpppppco
0 0

0 ,...,0,0,1,|,..., λλλ

� The convex hull contains all convex 

combinations of the points

� Convex combinations =

affine combinations /w 
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Affine maps
…as linear maps 

� A map Φ: Rn→ Rm is affine

� when Φ can be represented as Φ(v)=A(v)+b

where A is a linear map and b ∈ Rm

� Affine maps have a linear part (multiplication) � Affine maps have a linear part (multiplication) 

and a translation (additive)

Linear 

transformation Translation

















+
































=
















0

0

0

222120

121110

020100

'

'

'

z

y

x

z

y

x

aaa

aaa

aaa

z

y

x

9/15/2010 29Andrew Nealen, Rutgers, 2010



Affine transformations

� Preserve parallel lines

� lines → lines, planes → planes

� Might not preserve length and angles

� But do preserve relative length along lines� But do preserve relative length along lines

� If they do preserve length and angles then the 

transformation is an isometry

� Affine = linear + translation
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Affine maps
…as linear maps 

� Leads to the use of projective geometry

� 2D points and vectors represented as

(x, y, w) → homogeneous coordinates

w = 1 pointw = 1 point

w = 0 vector

� Point (0, 0, 0) not allowed, so domain 

R3 – {(0, 0, 0)}

� If w ∈ (0,1] then (x, y, w) → (x/w, y/w, 1)

A point

9/15/2010 31Andrew Nealen, Rutgers, 2010



What is w ?
2D case!

� A kind of a type

� Points + “points at 

infinity”

� Points at infinity are not� Points at infinity are not

affected by translation

� Infinite # of points 

correspond to (x, y, 1) 

→ {(tx, ty, t) | t ≠ 0}

� Line through origin  

– {origin}
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Homogeneous coordinates

� Works nicely for points and vectors

� Adding and scaling works too

� More in “projections”, where w ∈ [0,1]
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Linear transformation

� Purely linear transformation

� Origin does not move

� New coordinate axes are lin. comb. of old ones

Andrew Nealen, Rutgers, 2010 9/15/2010 34



Linear transformation

� Purely linear transformation
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Affine transformation
as a linear transformation + translation in n dimensions

� Origin moves → translation
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Affine transformation
as a linear transformation in n+1 dimensions

� Origin moves → translation
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What is so great about this?

� Easy to implement

� Checks for errors in the implementation

� Can always check the w coordinate to make sure 

that points and vectors remain unchangedthat points and vectors remain unchanged

� Unified representation for linear + translation

� Can compose many transformations into a single 

matrix through concatenation
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M = Mrot ∙ Mscale ∙ Mtranslate ∙ …


