CS 428: Fall 2010
Introduction to

Computer Graphics

Geometric Transformations

Andrew Nealen, Rutgers, 2010 9/15/2010

Topic overview

" Image formation and OpenGL (last week)
» Modeling the image formation process
= OpenGL primitives, OpenGL state machine

" Transformations and viewing
= Polygons and polygon meshes

" Programmable pipelines
" Modeling and animation
= Rendering

Andrew Nealen, Rutgers, 2010 9/15/2010 2

Topic overview

Image formation and OpenGL
Transformations and viewing (next weeks)

" Linear algebra review, Homogeneous coordinates
" Geometric + projective transformations

= Viewing, Viewports, Clipping

Polygons and polygon meshes

" Programmable pipelines

Modeling and animation
Rendering

Transformations in CG

" Specify placement of objects in the world

" relative to the configuration in which they are
defined

= Allow for reuse of objects , ﬁz‘
in different places, sizes st

" Specify the camera

position L8 \7/\a

= Specify the camera model TL__Hﬁ
(projection)

Transformations in CG

" The “where” is specified by translations and
rotations (= rigid body motions)

" Shape changes include

3cﬁ(;n5 O

s hearing 1 —

arbitrary BF —— %

" For now we will only use linear deformations
" Linear algebral

Representations in CG

Computations should not depend on
coordinate system (such as midpoint/origin)

Need careful accounting of points and vectors

» Both € R’ (3 tuples of floating point values)

Vectors

/\

" Displacements, velocities, directions, trajectories,
surface normals, etc.

Points

= | ocations!

Vector/point operations

Vector + vector = vector

Point + vector = point

Point + point = invalid!

= Street address analogy — (

Point — point = vector
= Works!

b

/

Vector review

A

P

R %

P ; = / -

M m -P i 3p Vw;
%

[

" [p+ql=p +q addition

" [spli=s-p scalar multiplication
" || p|l=sartl(p;)?] length

Vector review

A

P

- - =D, b

P .ff "; / -

Tov, = L ok, /o
%

[

"p-q=2p -q dot product i
pl-lal-cos0 A8,

= Normalization P :Hl%H

Andrew Nealen, Rutgers, 2010 9/15/2010 9

Perpendicular vectors

<v,w>=(

V:(x\/’yv) = v =1(-y)

\ In 2D only!

VL

Andrew Nealen, Rutgers, 2010 9/15/2010 10

Linear combination + Basis

" Linear combination
" A Vit A, Vv, ++A -V, withA eR

" lLinear independence of vectors vy, ..., v,
" A cVy+..+ A v, =0 onlywhenA,=..=A =0

" Basis of n-dimensions is a set of n linearly
independent vectors

" Every vector in R" has a unique set of A’s to
represent it - Cartesian coordinates

Inner (dot) product

= Defined for vectors:

<v, w>=||v]|l-||w]l-cosB

L

cos) = —
W]

<V,W >

Projection of wonto v

Andrew Nealen, Rutgers, 2010 9/15/2010 12

Distance between point and line

Pythagoras

() L’+dist(q, q')° =|lq—p, II
(2) L:<q_p09 V>

| v] L
= dist(q, q')" =[[q-p, ' L =

||2_<q_p09 V>2
> .
[v]

=|lq—p,

Representation of a plane
in 3D space

" Aplane tis defined by a normal n and one
point in the plane p,.

" Apointq € plane & <q—-py,, n>=0

" The normal n is perpendicular to all vectors in

the plane
n

Andrew Nealen, Rutgers, 2010 9/15/2010 14

Distance between point and plane

= Geometric way:
= Project (q - p,) onto n!

|n|

q n

Andrew Nealen, Rutgers, 2010 9/15/2010 15

Coordinates

= Connect drawing plane/space with R? or R

" Coordinate origin and axes are problem
specific
" Example: orthogonal coordinates in the lower
corner of this room

A

" Affine spaces have
" No fixed origin {
" No fixed axes

» (which is not the case in linear spaces)

Coordinates

Affine space

" “An affine space is a vector space that's
forgotten its origin” — John Baez

" |In R3, the origin, lines and planes through the
origin and the whole space are linear

" points, lines and planes in general as well as the
whole space are the affine subspaces. .

- /

Linear subspace Affine subspace

Primitives

Points

Andrew Nealen, Rutgers, 2010

9/15/2010

18

Primitives

Lines

W SSEE AT

Andrew Nealen, Rutgers, 2010 9/15/2010 19

Andrew Nealen, Rutgers, 2010

9/15/2010

Primitives

Triangles

20

Andrew Nealen, Rutgers, 2010

9/15/2010

Primitives
Shapes

21

Andrew Nealen, Rutgers, 2010

9/15/2010

Primitives

Shapes ... are tessellated

22

Primitives

Positioning

= Absolute coordinates?

Andrew Nealen, Rutgers, 2010 9/15/2010 23

Primitives

Positioning

" Transformation +
relative coordinates
= Translation
= Rotation
= Scaling
= Shearing

= Affine maps /
Transformations!

Andrew Nealen, Rutgers, 2010 9/15/2010 24

Affine maps

Affine combinations

" The set

4 n n M
<veV|v=Zii-vl., 'Zﬂi:b
i=0 i=0 J

.

is an affine combination of vectors v. (or of
points p.).

Andrew Nealen, Rutgers, 2010 9/15/2010 25

Affine maps

Barycentric coordinates

" Given and affine space A with coordinate
SyStem B= {pOD }

= For a point P =24 P with Z’l =1
the A are known as barycentrlc coordinates

" Physical interpretation:

" Points p, have mass A, - p ist the centroid (= center of

mass)
—pP
w
Ay + A, =1 S
1 = p_p()H
1 ‘pl_pOH

Bo

Affine maps

Barycentric coordinates

. A, = ((p p19p2))

A((po»pla 2))

A = A((p poapz))

i . A(A(posplapz))
=A Dot APt A D A = AB(p.po 1)

((poapppz))

A(posp1s 22)=5 (2= 2)< (0,)

Andrew Nealen, Rutgers, 2010 9/15/2010 27

Affine maps

Convex hull

" The set n n
co{po,...,pn}z{p | p :Z/Il. -pi,z/ll. =1, A420,1 =O,...,n}
is the convex hull co{p,,...,p,} of points p,,...,p,

» The convex hull contains all convex
combinations of the points

Py

= Convex combinations = Ds
affine combinations /w
barycentric coordinates
greater/equal to zero D,

Andrew Nealen, Rutgers, 2010 9/15/2010 28

" A map ©: R*—~ R™ s affine
* when @ can be represented as ®(v)=A(v)+b

where A is a linear map and b € R™

Affine maps

...as linear maps

" Affine maps have a linear part (multiplication)
and a translation (additive)

(x")

'

y

\Z')

/
Ayy Ay aoz\

a,, dy 4y

\ %20 Uy azz)
Linear
transformation

(x)

y

()

0

Yo

\ <

\ %0/

Translation

Affine transformations

Preserve parallel lines

" lines = lines, planes = planes

Might not preserve length and angles

" But do preserve relative length along lines

If they do preserve length and angles then the
transformation is an isometry

Affine = linear + translation

Affine maps

...as linear maps

" | eads to the use of projective geometry

= 2D points and vectors represented as
(x, y, w) > homogeneous coordinates
w=1 point
w=0 vector

= Point (0, O, 0) not allowed, so domain
R?*—{(0, 0, 0)}

= [fw € (0,1] then (x, y, w) = (x/w, y/w, 1)
\Apoint

" A kind of a type

" Points + “points at
infinity”
" Points at infinity are not
affected by translation
" |Infinite # of points
correspond to (x, y, 1)
- {(tx, ty, t) | t =0}
" Line through origin
— {origin}

Whatisw ?

2D case!

L

I
-

' A‘f

p .
[(%, L 12)
u,.,/// 7 :

Homogeneous coordinates

" Works nicely for points and vectors

F][5]- [R5] o

(po mEH o+ (ector): (pom+)

loif h"?)’r
[]f “L[h ’DY‘"&]

(‘*’P%"’r\.& C- D’f_f"_fﬁ} (Pmb‘{'/
" Adding and scaling works too

i.V\ ZD CX:\//Z/L.Q\)

" More in “projections”, where w € [0,1]

Linear transformation

" Purely linear transformation

/

+ Y
X::QK*Q |
J}(Y.:E')K+c(7 B hé’m ﬁmgw) VEsrSrdm =
‘7 [a € X K:
[H'[b Jj[yj °r [j{,][][
e o o 1
M&‘H“f.&'

kr
" Origin does not move

" New coordinate axes are lin. comb. of old ones

Linear transformation

" Purely linear transformation

/

+ Y
X::QK*Q |
J}(Y.:E')K+c(7 B hﬂ“aﬁmw VEdrSrdm =
7 _ e € X K:
730 S50 e [y [277
e o e 5‘1
M&‘Fm‘k
kr

. A A X = @’DC{;Q‘}
l"{: X*‘f are IJJ (\f; ('Q,f}c}))

L83 [Ceolmn o e hin)

Andrew Nealen, Rutgers, 2010 9/15/2010 35

Affine transformation

as a linear transformation + translation in n dimensions

= Origin moves - translation

[_Fw- Uac-—'%"f:‘
Y ..9% }(=~ 0‘-.3(‘*‘@}/

Y— Y ‘-"b?f“*a/\{

X’ JVE S5
‘6: (EI‘QG) {0“4’ F MP - Q_PE%'C'PY

- {DFK+C§1P}*+#

Y

Andrew Nealen, Rutgers, 2010 9/15/2010 36

Affine transformation

as a linear transformation in n+1 dimensions

= Origin moves - translation

¢ /[p
‘l] P;fj per
/ /

joar:-’? ‘Q)f’ ’D f\“jlj amnd Vﬁc.?é)fj ,/

}{f ' N e P{
Yrj: b cj £ Y] V¢¢7{1)1T
e O o i o

Andrew Nealen, Rutgers, 2010 9/15/2010 37

What is so great about this?

" Easy to implement
" Checks for errors in the implementation

= Can always check the w coordinate to make sure
that points and vectors remain unchanged

" Unified representation for linear + translation

= Can compose many transformations into a single
matrix through concatenation

M=M_-M

rot scale

M

translate °°°

