CS 428: Fall 2010 Introduction to Computer Graphics

Geometric Transformations

Topic overview

- Image formation and OpenGL (last week)
- Modeling the image formation process
- OpenGL primitives, OpenGL state machine
- Transformations and viewing
- Polygons and polygon meshes
- Programmable pipelines
- Modeling and animation
- Rendering

Topic overview

- Image formation and OpenGL
- Transformations and viewing (next weeks)
- Linear algebra review, Homogeneous coordinates
- Geometric + projective transformations
- Viewing, Viewports, Clipping
- Polygons and polygon meshes
- Programmable pipelines
- Modeling and animation
- Rendering

Transformations in CG

- Specify placement of objects in the world
- relative to the configuration in which they are defined
- Allow for reuse of objects in different places, sizes
- Specify the camera position
- Specify the camera model
 (projection)

Transformations in CG

- The "where" is specified by translations and rotations (= rigid body motions)
- Shape changes include

- For now we will only use linear deformations
- Linear algebra!

Representations in CG

- Computations should not depend on coordinate system (such as midpoint/origin)
- Need careful accounting of points and vectors
- Both $\in \mathfrak{R}^{3}$ (3 tuples of floating point values)
- Vectors
- Displacements, velocities, directions, trajectories, surface normals, etc.
- Points
- Locations!

Vector/point operations

- Vector + vector $=$ vector
- Point + vector $=$ point
- Point + point = invalid!
- Street address analogy
- Point - point $=$ vector

$$
\dot{b}+\overrightarrow{b-a}=\dot{c}=2 b-a
$$

- Works!

Vector review

Vector review

- Normalization $\hat{\mathbf{p}}=\frac{\mathbf{p}}{\|\mathbf{p}\|}$

Perpendicular vectors

$$
\begin{aligned}
& <\mathbf{v}, \mathbf{w}>=0 \\
& \mathbf{v}=\left(x_{v}, y_{v}\right) \Rightarrow \mathbf{v}^{\perp}= \pm\left(-y_{v}, x_{v}\right) \\
& \underset{\mathbf{v}^{\perp}}{\mathbf{v}}
\end{aligned}
$$

Linear combination + Basis

- Linear combination
- $\lambda_{1} \cdot v_{1}+\lambda_{2} \cdot v_{2}+\ldots+\lambda_{n} \cdot v_{n}$ with $\lambda_{i} \in R$
- Linear independence of vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$
- $\lambda_{1} \cdot v_{1}+\ldots+\lambda_{n} \cdot v_{n}=0$ only when $\lambda_{i}=\ldots=\lambda_{n}=0$
- Basis of n-dimensions is a set of n linearly independent vectors
- Every vector in R^{n} has a unique set of $\lambda^{\prime} \mathrm{s}$ to represent it \rightarrow Cartesian coordinates

Inner (dot) product

- Defined for vectors:

$$
<\mathbf{v}, \mathbf{w}>=\|\mathbf{v}\| \cdot\|\mathbf{w}\| \cdot \cos \theta
$$

Projection of \mathbf{w} onto \mathbf{v}

Distance between point and line

Pythagoras :

(1) $L^{2}+\operatorname{dist}\left(\mathbf{q}, \mathbf{q}^{\prime}\right)^{2}=\left\|\mathbf{q}-\mathbf{p}_{0}\right\|^{2}$
(2) $L=\frac{\left\langle\mathbf{q}-\mathbf{p}_{\mathbf{0}}, \mathbf{v}\right\rangle}{\|\mathbf{v}\|}$

$\Rightarrow \quad \operatorname{dist}\left(\mathbf{q}, \mathbf{q}^{\prime}\right)^{2}=\left\|\mathbf{q}-\mathbf{p}_{\mathbf{0}}\right\|^{2}-L^{2}=$

$$
=\left\|\mathbf{q}-\mathbf{p}_{\mathbf{0}}\right\|^{2}-\frac{\left\langle\mathbf{q}-\mathbf{p}_{\mathbf{0}}, \mathbf{v}>^{2}\right.}{\|\mathbf{v}\|^{2}}
$$

Representation of a plane in 3D space

- A plane π is defined by a normal \mathbf{n} and one point in the plane \mathbf{p}_{0}.
- A point $\mathbf{q} \in$ plane $\Leftrightarrow<\mathbf{q}-\mathbf{p}_{0}, \mathbf{n}>=0$
- The normal \mathbf{n} is perpendicular to all vectors in the plane

Distance between point and plane

- Geometric way:
- Project (\mathbf{q} - \mathbf{p}_{0}) onto \mathbf{n} !

$$
\operatorname{dist}=\frac{\left|<\mathbf{q}-\mathbf{p}_{0}, \mathbf{n}>\right|}{\|\mathbf{n}\|}
$$

Coordinates

- Connect drawing plane/space with R^{2} or R^{3}
- Coordinate origin and axes are problem specific
- Example: orthogonal coordinates in the lower corner of this room
- Affine spaces have
- No fixed origin
- No fixed axes
- (which is not the case in linear spaces)

Coordinates

Affine space

- "An affine space is a vector space that's forgotten its origin" - John Baez
- In R^{3}, the origin, lines and planes through the origin and the whole space are linear
- points, lines and planes in general as well as the whole space are the affine subspaces.

Linear subspace
Affine subspace

Primitives
 Points

Primitives

Lines

Primitives

Triangles

Primitives
 Shapes

Primitives

Shapes ... are tessellated

Primitives

Positioning

- Absolute coordinates?

- Transformation + relative coordinates
- Translation
- Rotation
- Scaling
- Shearing
- Affine maps /

Transformations!

Primitives

Positioning

Affine maps
 Affine combinations

- The set

$$
\left\{v \in V \mid v=\sum_{i=0}^{n} \lambda_{i} \cdot v_{i}, \quad \sum_{i=0}^{n} \lambda_{i}=1\right\}
$$

is an affine combination of vectors \mathbf{v}_{i} (or of points \mathbf{p}_{i}).

Affine maps

Barycentric coordinates

- Given and affine space A with coordinate system $\mathrm{B}=\left\{\mathbf{p}_{0}, \ldots \mathbf{p}_{n}\right\}$
- For a point $p=\sum_{i=0}^{n} \lambda_{i} \cdot p_{1}$ with $\sum_{i=0}^{n} \lambda_{i}=1$ the λ_{i} are known as barycentric coordinates
- Physical interpretation:
- Points \mathbf{p}_{i} have mass $\lambda_{i} \rightarrow \mathbf{p}$ is the centroid (= center of mass)
p_{1}

$$
\begin{array}{ll}
\lambda_{0}+\lambda_{1}=1 & =\frac{\left\|p_{1}-p\right\|}{\left\|p_{1}-p_{0}\right\|} \\
& \lambda_{1}
\end{array}=\frac{\left\|p-p_{0}\right\|}{\left\|p_{1}-p_{0}\right\|}
$$

Affine maps

Barycentric coordinates

$$
\begin{aligned}
\lambda_{0} & =\frac{A\left(\Delta\left(p, p_{1}, p_{2}\right)\right)}{A\left(\Delta\left(p_{0}, p_{1}, p_{2}\right)\right)} \\
\lambda_{1} & =\frac{A\left(\Delta\left(p, p_{0}, p_{2}\right)\right)}{A\left(\Delta\left(p_{0}, p_{1}, p_{2}\right)\right)} \\
p=\lambda_{0} \cdot p_{0}+\lambda_{1} \cdot p_{1}+\lambda_{2} \cdot p_{2} & \lambda_{2}
\end{aligned}=\frac{A\left(\Delta\left(p, p_{0}, p_{1}\right)\right)}{A\left(\Delta\left(p_{0}, p_{1}, p_{2}\right)\right)}
$$

Affine maps

Convex hull

- The set

$$
\operatorname{co}\left\{p_{0}, \ldots, p_{n}\right\}=\left\{p \mid p=\sum_{i=0}^{n} \lambda_{i} \cdot p_{i}, \sum_{i=0}^{n} \lambda_{i}=1, \quad \lambda_{i} \geq 0, i=0, \ldots, n\right\}
$$

is the convex hull co $\left\{p_{0}, \ldots, p_{n}\right\}$ of points p_{0}, \ldots, p_{n}

- The convex hull contains all convex
combinations of the points
- Convex combinations = affine combinations /w barycentric coordinates greater/equal to zero

Affine maps

...as linear maps

- A map $\Phi: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ is affine
- when Φ can be represented as $\Phi(\mathbf{v})=\mathrm{A}(\mathbf{v})+\mathbf{b}$ where A is a linear map and $\mathbf{b} \in \mathrm{R}^{\mathrm{m}}$
- Affine maps have a linear part (multiplication) and a translation (additive)

$$
\begin{aligned}
&\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right) \\
& \text { Linear } \\
& \text { transformation Translatic }
\end{aligned}
$$

Affine transformations

- Preserve parallel lines
- lines \rightarrow lines, planes \rightarrow planes
- Might not preserve length and angles
- But do preserve relative length along lines
- If they do preserve length and angles then the transformation is an isometry
- Affine = linear + translation

Affine maps ...as linear maps

- Leads to the use of projective geometry
- 2D points and vectors represented as ($\mathbf{x}, \mathbf{y}, \mathbf{w}$) \rightarrow homogeneous coordinates

$$
\begin{array}{ll}
w=1 & \text { point } \\
w=0 & \text { vector }
\end{array}
$$

- Point (0, 0, 0) not allowed, so domain $R^{3}-\{(0,0,0)\}$
- If $w \in(0,1]$ then $(x, y, w) \rightarrow(x / w, y / w, 1)$

A point

What is w?
 2D case!

- A kind of a type
- Points + "points at infinity"
- Points at infinity are not affected by translation
- Infinite \# of points correspond to ($\mathrm{x}, \mathrm{y}, 1$)
$\rightarrow\{(\mathrm{tx}, \mathrm{t} y, \mathrm{t}) \mid \mathrm{t} \neq 0\}$
- Line through origin
- \{origin\}

Homogeneous coordinates

- Works nicely for points and vectors

$$
\begin{aligned}
& {\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]+\left[\begin{array}{c}
v_{x} \\
v_{y} \\
0
\end{array}\right]=\left[\begin{array}{c}
p_{x}+v_{x} \\
p_{y}+v_{y} \\
1
\end{array}\right]} \\
& \left(p_{\text {oint }}+(v e c t o r)=\left(p_{0} \text { int }\right)\right. \\
& \frac{1}{2}\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
q_{x} \\
q_{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{x}+q_{x} \\
p_{y}+q_{y} \\
1
\end{array}\right] \quad \text { in } 3 D:(x, y, z, \omega) \\
& \text { (affine c. of } \left.p t_{3}\right) \quad\left(p_{0}\right. \text { int) }
\end{aligned}
$$

- Adding and scaling works too
- More in "projections", where w $\in[0,1]$

Linear transformation

- Purely linear transformation

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=b x+d y \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & d \\
b & d
\end{array}\right]}_{\text {matrix }}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{aligned} \text { or }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{lll}
a & 6 & 0 \\
b & d & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] .
$$

- Origin does not move
- New coordinate axes are lin. comb. of old ones

Linear transformation

- Purely linear transformation

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=b x+d y \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
b & d
\end{array}\right]}_{\text {matrix }}\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { or }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{lll}
a & 6 & 0 \\
b & d & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]}
\end{aligned}
$$

if $x+y$ are $\hat{\imath} \hat{\jmath} \quad\binom{x=(1,0)}{y=(0,1,0)}$

$$
x^{\prime}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \quad y^{\prime}=\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { (columns of matrix) }
$$

Affine transformation
as a linear transformation + translation in n dimensions

- Origin moves \rightarrow translation

Affine transformation
as a linear transformation in $\mathrm{n}+1$ dimensions

- Origin moves \rightarrow translation

$$
\left[\begin{array}{c}
p_{x}^{\prime} \\
p_{y^{\prime}}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & c & e \\
b & d & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \quad \text { points }
$$

good for points and vectors!

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{lcc}
a & c & e \\
b & d & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \quad \text { vectors }
$$

What is so great about this?

- Easy to implement
- Checks for errors in the implementation
- Can always check the w coordinate to make sure that points and vectors remain unchanged
- Unified representation for linear + translation
- Can compose many transformations into a single matrix through concatenation

$$
\mathbf{M}=\mathbf{M}_{\text {rot }} \cdot \mathbf{M}_{\text {scale }} \cdot \mathbf{M}_{\text {translate }} \cdot \ldots
$$

