CS 428: Fall 2010 Introduction to Computer Graphics

> Image formation Color and perception

Image formation

Image formation

Need a model of this process

Image

 Resulting image is at best a blur (more likely, it's white)

Restricting the light

Use a barrier to select rays, block the rest

- This is a pinhole camera
 - One light ray for each loc. on film is let through
 - Resulting image is inverted

Kodak, 1930s

WWW.ZZZ.CZ

www.pinholeday.org

Andrew Nealen, Rutgers, 2010

Advantages	Disadvantages
Easy to model and simulate	Requires a lot of light (bright light or long exposure)
Everything is in	Everything is in
focus	focus

Collecting the light

- Collect a bunch of rays and concentrate them in one place on the sensor
- Light paths are bent using refraction
 - Light passing into optically denser material bends towards surface normal

air

Stacking prisms

 We can use different arrangements of prisms to have particular light rays pass through a single point

 As the number of prisms increases, we have a lens

Image formation with a lens

Shape of the lens controls how light is bent

Object

Lens

Film

Image formation with a lens

Specific distance at which objects are in focus

The focal point is where incoming parallel

Depth of field

Range of distance in "good" focus

low

high

Depth of field

separating subject from background

Tilt shift photography

Model of image formation

Synthetic camera model typical in CG

You do not see the image, but rather understand the scene presented to you!

ion.html

You do not see the image, but rather understand the scene presented to you!

You do not see the image, but rather understand the scene presented to you!

The squares marked A and B are the same shade of gray

It is not possible to directly measure intensities with your eyes in normal circumstances

> http://web.mit.edu/persci/peop le/adelson/checkershadow_illus ion.html

Edward H. Adelson

Intensity perception

White's illusion

Intensity perception

White's illusion

Brightness depends on context

- Why do you need to be familiar with this?
- Photorealism

Need to convince people that CG images are *real*

Why do you need to be familiar with this?

Photorealism

Need to know what aspects of the world are can be noticed, so the right model is used (translucency)

- Why do you need to be familiar with this?
- Photorealism

Don't compute what people don't notice or can't distinguish!

Why do you need to be familiar with this?

Non-photorealism

Need to understand what artistsare doing precisely→ Depend on HVP!

- Why do you need to be familiar with this?
- Non-photorealism

Detail in shape can be replaced by stylization

Why do you need to be familiar with this?

Visualization

Present information so people can see it and understand it easily

The human eye

Focusing

- Cornea for fixed (mitial) focusing
- Lens for main focus adjustment

Brightness adaptation

- Pupil size
- Retina
 - Layer of photosensitive cells
 - Rods: intensity perception (10x more sensitive)
 - Vision at low light levels (scotopic vision)
 - Cones: color perception
 - Active at higher light levels (photopic vision)
- 7 million cones (central area of retina)
- 75-150 million rods (periphery of retina)

Light intensity

Perceived on a relative (logarithmic) scale

Irradiance, measured in watts per square meter (W/m²), called *intensity* in most branches of physics

Lightness contrast

Lightness contrast

- Depends on context
- Helps us maintain a consistent view of the world under changing lighting conditions
 - "Factor out" the lighting in the real world
 - Does this still work in CG? (... Yes, it does)

White

White

Really?

Gradually introduced some background gray over the past five slides...

Mach bands

- Impressions of brightness changes in regions near brightness discontinuities (C⁰ or C¹)
- Or during rapid intensity change

Mach bands

- Impressions of brightness changes in regions near brightness discontinuities (C⁰ or C¹)
- Or during rapid intensity change

Synthetic example with USM

Andrew Nealen, Rutgers, 2010

Mach bands

- Makes surface shading difficult
 - C¹ discontinuities are very noticeable

Lens flare

- Artifact of all lenses
 - Internal reflection and scattering
- A good cue for brightness, even when screens aren't that bright

Tone mapping

- Taking a "picture of the sun"
 - Current limits of (commodity) display technology
- Tone mapping
 - Vary exposure length + combine (nonlinearly)

Color perception

Color is not only about the physics of light.. It is a **sensation**

Louis E. Keiner - Coastal Carolina University

Emission spectrum

Spectral power distribution (SPD)

- This is not color!
 - Light is infinite dimensional (spectrum)

Emission spectrum

Measured by spectroradiometer

Color matching

- Conjecture:
 - Every color can be uniquely expressed as mixing of a small number of **primaries**
- Experiment
 - Show colors and ask (A) observer to match —
 - 3 colors suffice
 - Yields color matching function for each primary

Color matching

- Given scaled color matching functions and a color with spectral power distribution *I*(λ)
 - Compute RGB (tristimulus) as

$$R = \int_{0}^{\infty} I(\lambda) \,\overline{r}(\lambda) \, d\lambda$$
$$G = \int_{0}^{\infty} I(\lambda) \,\overline{g}(\lambda) \, d\lambda$$
$$B = \int_{0}^{\infty} I(\lambda) \,\overline{b}(\lambda) \, d\lambda$$

 Inner product (projection) of infinite dimensional spectrum onto 3D color space Negative color?

CIE color space

(Commission internationale de l'éclairage)

- Gamut of the CIE RGB primaries and location of primaries on the CIE
 1931 xy chromaticity
 diagram
- CIE XYZ with all pos. values $20 \atop 1.5 \atop 1.0 \atop 0.5 \atop 0.0 \atop 0.0$

See

http://en.wikipedia.org/
wiki/CIE 1931 color space

Why three primaries?

Three types of cones in the retina

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones.

Color mixing

 Grassmann's first law
 Any color can be made by mixing three different primaries A, B, C

X = a A + b B + c C

Grassmann's second law
 If X = Y (perceptual equality of colors), then

$$X + Z = Y + Z$$

- Color can be seen as a 3D vector space
 - Linearity!

Color pickers

 Basis transformation (change of basis) between color (vector) spaces

RGB mixing

additive

Standard color model

Andrew Nealen, Rutgers, 2010

CMY mixing

subtractive

Andrew Nealen, Rutgers, 2010

Perceptual equality of colors

- Different spectra create same color perception
- Known as metamers

