CS 428: Fall 2010 Introduction to Computer Graphics

Image formation
Color and perception

Image formation

Image formation

- Need a model of this process

- Resulting image is at best a blur (more likely, it's white)

Restricting the light

- Use a barrier to select rays, block the rest

- This is a pinhole camera
- One light ray for each loc. on film is let through
- Resulting image is inverted

Pinhole cameras

Kodak, 1930s

Pinhole cameras

WWW.ZZZ.CZ

Pinhole cameras

www.pinholeday.org

Pinhole cameras

Advantages

Disadvantages

Easy to model and Requires a lot of
simulate
light (bright light
or long exposure)
Everything is in focus

Everything is in focus

Collecting the light

- Collect a bunch of rays and concentrate them in one place on the sensor
- Light paths are bent using refraction
- Light passing into optically denser material bends towards surface normal

(prism)

Stacking prisms

- We can use different arrangements of prisms to have particular light rays pass through a single point

- As the number of prisms increases, we have a lens

Image formation with a lens

- Shape of the lens controls how light is bent

Object
Lens
Film

Image formation with a lens

- Specific distance at which objects are in focus

- The focal point is where incoming parallel rays meet

Depth of field

- Range of distance in "good" focus

Depth of field

separating subject from background

Tilt shift photography

Model of image formation

- Synthetic camera model typical in CG

Human visual perception

Human visual perception

- You do not see the image, but rather understand the scene presented to you!

Human visual perception

- You do not see the image, but rather understand the scene presented to you!

The squares marked A and B are the same shade of gray

[^0]http://web.mit.edu/persci/peop
le/adelson/checkershadow_illus

Human visual perception

- You do not see the image, but rather understand the scene presented to you!

The squares marked A and B are the same shade of gray

It is not possible to directly measure intensities with your eyes in normal circumstances

Intensity perception

- White's illusion

Intensity perception

- White's illusion

Brightness depends on context

Human visual perception

- Why do you need to be familiar with this?
- Photorealism Need to convince people that CG images are real

Human visual perception

- Why do you need to be familiar with this?
- Photorealism Need to know what aspects of the world are can be noticed, so the right model is used (translucency)

Human visual perception

- Why do you need to be familiar with this?
- Photorealism

Don't compute what people don't notice or can't distinguish!

Human visual perception

- Why do you need to be familiar with this?
- Non-photorealism Need to understand what artists are doing precisely
\rightarrow Depend on HVP!

Human visual perception

- Why do you need to be familiar with this?
- Non-photorealism

Detail in shape can be replaced by stylization

Human visual perception

- Why do you need to be familiar with this?
- Visualization

Present information so people can see it and understand it easily

The human eye

Focusing

- Cornea for fixed (mitial) focusing
- Lens for main focus adjustment
 short f distant objects for nearby obj

Brightness adaptation

- Pupil size
- Retina
- Layer of photosensitive cells
- Rods: intensity perception (10x more sensitive)
- Vision at low light levels (scotopic vision)
- Cones: color perception
- Active at higher light levels (photopic vision)
- 7 million cones (central area of retina)
- 75-150 million rods (periphery of retina)

Light intensity

- Perceived on a relative (logarithmic) scale

$$
\begin{array}{r}
\frac{I_{1}}{I_{0}} \cong \frac{I_{2}}{I_{1}} \leftarrow \text { Same perceived difference } \\
\qquad \underbrace{0.2 \rightarrow 0.3}_{0.1 \text { difference }}=\underbrace{0.4 \rightarrow 0.6}_{0.2 \text { difference }}
\end{array}
$$

Irradiance, measured in watts per square meter ($\mathrm{W} / \mathrm{m}^{2}$), called intensity in most branches of physics

Lightness contrast

Lightness contrast

- Depends on context
- Helps us maintain a consistent view of the world under changing lighting conditions
- "Factor out" the lighting in the real world
- Does this still work in CG? (... Yes, it does)

White

White

- Really?
- Gradually introduced some background gray over the past five slides...

Mach bands

- Impressions of brightness changes in regions near brightness discontinuities (C^{0} or C^{1})
- Or during rapid intensity change

Mach bands

- Impressions of brightness changes in regions near brightness discontinuities (C^{0} or C^{1})
- Or during rapid intensity change

Synthetic example with USM

Mach bands

- Makes surface shading difficult
- C^{1} discontinuities are very noticeable

Lens flare

- Artifact of all lenses
- Internal reflection and scattering
- A good cue for brightness, even when screens aren't that bright

Tone mapping

- Taking a "picture of the sun"
- Current limits of (commodity) display technology
- Tone mapping
- Vary exposure length + combine (nonlinearly)

Color perception

Color is not only about the physics of light.. It is a sensation

Emission spectrum

- Spectral power distribution (SPD)

- This is not color!
- Light is infinite dimensional (spectrum)

Emission spectrum

- Measured by spectroradiometer

Color matching

- Conjecture:
- Every color can be uniquely expressed as mixing of a small number of primaries
- Experiment
- Show colors and ask ${ }{ }^{(4)}$ observer to match \longrightarrow
- 3 colors suffice
- Yields color matching function

Bipartite white screen
 for each primary

Color matching

- Given scaled color matching functions and a color with spectral power distribution $I(\lambda)$
- Compute RGB (tristimulus) as $R=\int_{0}^{\infty} I(\lambda) \bar{r}(\lambda) d \lambda$ $G=\int_{0}^{\infty} I(\lambda) \bar{g}(\lambda) d \lambda$ $B=\int_{0}^{\infty} I(\lambda) \bar{b}(\lambda) d \lambda$

- Inner product (projection) of infinite dimensional spectrum onto 3D color space

CIE color space

(Commission internationale de l'éclairage)

- Gamut of the CIE RGB primaries and location of primaries on the CIE 1931 xy chromaticity diagram
- CIE XYZ with all pos. values

See
http://en.wikipedia.org/ wiki/CIE_1931_color_space

Why three primaries?

- Three types of cones in the retina

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones.

Figure 2: Spectral response curves for each cone type. The peaks for each curve are at 440 nm (blue), 545 nm (green) and 580 nm (red).

Color mixing

- Grassmann’s first law Any color can be made by mixing three different primaries A, B, C

$$
X=a A+b B+c C
$$

- Grassmann's second law If $\mathrm{X}=\mathrm{Y}$ (perceptual equality of colors), then

$$
X+Z=Y+Z
$$

- Color can be seen as a 3D vector space
- Linearity!

Color pickers

- Basis transformation (change of basis) between color (vector) spaces

RGB mixing additive

Standard color model

CMY mixing subtractive

Used in print media

Perceptual equality of colors

- Different spectra create same color perception
- Known as metamers

[^0]: Edward H. Adelson

