Least-Squares Rigid Motion Using SVD

Olga Sorkine

Abstract

This note summarizes the steps to computing the rigid transformation that aligns two sets of points.

Key words: Shape matching, rigid alignment, rotation, SVD

1 Problem statement

Let $P=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$ and $Q=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\}$ be two sets of corresponding points in \mathbb{R}^{d}. We wish to find a rigid transformation that optimally aligns the two sets in the least squares sense, i.e., we seek a rotation R and a translation vector \mathbf{t} such that

$$
\begin{equation*}
(R, \mathbf{t})=\underset{R, \mathbf{t}}{\operatorname{armgin}} \sum_{i=1}^{n} w_{i}\left\|\left(R \mathbf{p}_{i}+\mathbf{t}\right)-\mathbf{q}_{i}\right\|^{2} \tag{1}
\end{equation*}
$$

where $w_{i}>0$ are weights for each point pair.
In the following we will detail the derivation of R and \mathbf{t}; readers that are interested in the final recipe may skip the proofs and go directly Section 4.

2 Computing the translation

Assume R is fixed and denote $F(\mathbf{t})=\sum_{i=1}^{n} w_{i}\left\|\left(R \mathbf{p}_{i}+\mathbf{t}\right)-\mathbf{q}_{i}\right\|^{2}$. We can find the optimal translation by taking the derivative of F w.r.t. \mathbf{t} and searching for its roots:

$$
\begin{align*}
0 & =\frac{\partial F}{\partial \mathbf{t}}=\sum_{i=1}^{n} 2 w_{i}\left(R \mathbf{p}_{i}+\mathbf{t}-\mathbf{q}_{i}\right)= \\
& =2 \mathbf{t}\left(\sum_{i=1}^{n} w_{i}\right)+2 R\left(\sum_{i=1}^{n} w_{i} \mathbf{p}_{i}\right)-2 \sum_{i=1}^{n} w_{i} \mathbf{q}_{i} . \tag{2}
\end{align*}
$$

Denote

$$
\begin{equation*}
\overline{\mathbf{p}}=\frac{\sum_{i=1}^{n} w_{i} \mathbf{p}_{i}}{\sum_{i=1}^{n} w_{i}}, \quad \overline{\mathbf{q}}=\frac{\sum_{i=1}^{n} w_{i} \mathbf{q}_{i}}{\sum_{i=1}^{n} w_{i}} \tag{3}
\end{equation*}
$$

By rearranging the terms of (2) we get

$$
\begin{equation*}
\mathbf{t}=\overline{\mathbf{q}}-R \overline{\mathbf{p}} \tag{4}
\end{equation*}
$$

In other words, the optimal translation \mathbf{t} maps the transformed weighted centroid of P to the weighted centroid of Q. Let us plug the optimal \mathbf{t} into our objective function:

$$
\begin{align*}
\sum_{i=1}^{n} w_{i}\left\|\left(R \mathbf{p}_{i}+\mathbf{t}\right)-\mathbf{q}_{i}\right\|^{2} & =\sum_{i=1}^{n} w_{i}\left\|R \mathbf{p}_{i}+\overline{\mathbf{q}}-R \overline{\mathbf{p}}-\mathbf{q}_{i}\right\|^{2}= \tag{5}\\
& =\sum_{i=1}^{n} w_{i}\left\|R\left(\mathbf{p}_{i}-\overline{\mathbf{p}}\right)-\left(\mathbf{q}_{i}-\overline{\mathbf{q}}\right)\right\|^{2} \tag{6}
\end{align*}
$$

We can thus concentrate on computing the rotation R by restating the problem such that the translation would be zero:

$$
\begin{equation*}
\mathbf{x}_{i}:=\mathbf{p}_{i}-\overline{\mathbf{p}}, \quad \mathbf{y}_{i}:=\mathbf{q}_{i}-\overline{\mathbf{q}} \tag{7}
\end{equation*}
$$

So we look for the optimal rotation R such that

$$
\begin{equation*}
R=\underset{R}{\operatorname{argmin}} \sum_{i=1}^{n} w_{i}\left\|R \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2} . \tag{8}
\end{equation*}
$$

3 Computing the rotation

Let us simplify the expression we are trying to minimize in (8):

$$
\begin{align*}
\left\|R \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2} & =\left(R \mathbf{x}_{i}-\mathbf{y}_{i}\right)^{T}\left(R \mathbf{x}_{i}-\mathbf{y}_{i}\right)=\left(\mathbf{x}_{i}^{T} R^{T}-\mathbf{y}_{i}^{T}\right)\left(R \mathbf{x}_{i}-\mathbf{y}_{i}\right)= \\
& =\mathbf{x}_{i}^{T} R^{T} R \mathbf{x}_{i}-\mathbf{y}_{i}^{T} R \mathbf{x}_{i}-\mathbf{x}_{i}^{T} R^{T} \mathbf{y}_{i}+\mathbf{y}_{i}^{T} \mathbf{y}_{i}= \\
& =\mathbf{x}_{i}^{T} \mathbf{x}_{i}-\mathbf{y}_{i}^{T} R \mathbf{x}_{i}-\mathbf{x}_{i}^{T} R^{T} \mathbf{y}_{i}+\mathbf{y}_{i}^{T} \mathbf{y}_{i} . \tag{9}
\end{align*}
$$

We got the last step by remembering that rotation matrices imply $R^{T} R=I$ (I is the identity matrix).

Note that $\mathbf{x}_{i}^{T} R^{T} \mathbf{y}_{i}$ is a scalar: \mathbf{x}_{i}^{T} has dimension $1 \times d, R^{T}$ is $d \times d$ and \mathbf{y}_{i} is $d \times 1$. For any scalar a we trivially have $a=a^{T}$, therefore

$$
\begin{equation*}
\mathbf{x}_{i}^{T} R^{T} \mathbf{y}_{i}=\left(\mathbf{x}_{i}^{T} R^{T} \mathbf{y}_{i}\right)^{T}=\mathbf{y}_{i}^{T} R \mathbf{x}_{i} \tag{10}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\left\|R \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2}=\mathbf{x}_{i}^{T} \mathbf{x}_{i}-2 \mathbf{y}_{i}^{T} R \mathbf{x}_{i}+\mathbf{y}_{i}^{T} \mathbf{y}_{i} \tag{11}
\end{equation*}
$$

Let us look at the minimization and substitute the above expression:

$$
\begin{align*}
& \underset{R}{\operatorname{argmin}} \sum_{i=1}^{n} w_{i}\left\|R \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2}=\underset{R}{\operatorname{argmin}} \sum_{i=1}^{n} w_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{i}-2 \mathbf{y}_{i}^{T} R \mathbf{x}_{i}+\mathbf{y}_{i}^{T} \mathbf{y}_{i}\right)= \\
= & \underset{R}{\operatorname{argmin}}\left(\sum_{i=1}^{n} w_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i}-2 \sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} R \mathbf{x}_{i}+\sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} \mathbf{y}_{i}\right)= \\
= & \underset{R}{\operatorname{argmin}}\left(-2 \sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} R \mathbf{x}_{i}\right) . \tag{12}
\end{align*}
$$

The last step (removing $\sum_{i=1}^{n} w_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{i}$ and $\sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} \mathbf{y}_{i}$) holds because these expressions do not depend on R at all, so excluding them would not affect the minimizer. The same holds for multiplication of the minimization expression by a scalar, so we have

$$
\begin{equation*}
\underset{R}{\operatorname{argmin}}\left(-2 \sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} R \mathbf{x}_{i}\right)=\underset{R}{\operatorname{argmax}} \sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} R \mathbf{x}_{i} . \tag{13}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} R \mathbf{x}_{i}=\operatorname{tr}\left(W Y^{T} R X\right) \tag{14}
\end{equation*}
$$

where $W=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)$ is an $n \times n$ diagonal matrix with the weight w_{i} on diagonal entry i; Y is the $d \times n$ matrix with \mathbf{y}_{i} as its columns and X is the $d \times n$ matrix with \mathbf{x}_{i} as its columns. We remind the reader that the trace of a square matrix is the sum of the elements on the diagonal: $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$. See Figure 1 for an illustration of the algebraic manipulation.

Therefore we are looking for a rotation R that maximizes $\operatorname{tr}\left(W Y^{T} R X\right)$. Matrix trace has the property

$$
\begin{equation*}
\operatorname{tr}(A B)=\operatorname{tr}(B A) \tag{15}
\end{equation*}
$$

for any matrices A, B of compatible dimensions. Therefore

$$
\begin{equation*}
\operatorname{tr}\left(W Y^{T} R X\right)=\operatorname{tr}\left(\left(W Y^{T}\right)(R X)\right)=\operatorname{tr}\left(R X W Y^{T}\right) \tag{16}
\end{equation*}
$$

Let us denote the $d \times d$ "covariance" matrix $S=X W Y^{T}$. Take SVD of S :

$$
\begin{equation*}
S=U \Sigma V^{T} \tag{17}
\end{equation*}
$$

Fig. 1. Schematic explanation of $\sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{T} R \mathbf{x}_{i}=\operatorname{tr}\left(W Y^{T} R X\right)$.
Now substitute the decomposition into the trace we are trying to maximize:

$$
\begin{equation*}
\operatorname{tr}\left(R X W Y^{T}\right)=\operatorname{tr}(R S)=\operatorname{tr}\left(R U \Sigma V^{T}\right)=\operatorname{tr}\left(\Sigma V^{T} R U\right) \tag{18}
\end{equation*}
$$

The last step was achieved using the property of trace (15). Note that V, R and U are all orthogonal matrices, so $M=V^{T} R U$ is also an orthogonal matrix. This means that the columns of M are orthonormal vectors, and in particular, $\mathbf{m}_{j}^{T} \mathbf{m}_{j}=1$ for each M's column \mathbf{m}_{j}. Therefore all entries $m_{i j}$ of M are smaller than 1 in magnitude:

$$
\begin{equation*}
1=\mathbf{m}_{j}^{T} \mathbf{m}_{j}=\sum_{i=1}^{d} m_{i j}^{2} \Rightarrow m_{i j} \leq 1 \Rightarrow\left|m_{i j}\right|<1 \tag{19}
\end{equation*}
$$

So what is the maximum possible value for $\operatorname{tr}(\Sigma M)$? Remember that Σ is a diagonal matrix with non-negative values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d} \geq 0$ on the diagonal. Therefore:

$$
\operatorname{tr}(\Sigma M)=\left(\begin{array}{cccc}
\sigma_{1} & & & \tag{20}\\
& \sigma_{2} & & \\
& & \ddots & \\
& & \sigma_{d}
\end{array}\right)\left(\begin{array}{cccc}
m_{11} 1 & m_{12} & \ldots & m_{1 d} \\
m_{21} & m_{22} & \ldots & m_{2 d} \\
\vdots & \vdots & \vdots & \vdots \\
m_{d 1} & m_{d 2} & \ldots & m_{d d}
\end{array}\right)=\sum_{i=1}^{d} \sigma_{i} m_{i i} \leq \sum_{i=1}^{d} \sigma_{i} .
$$

Therefore the trace is maximized if $m_{i i}=1$. Since M is an orthogonal matrix, this means that M would have to be the identity matrix!

$$
\begin{equation*}
I=M=V^{T} R U \Rightarrow V=R U \Rightarrow R=V U^{T} \tag{21}
\end{equation*}
$$

Orientation rectification. The process we just described finds the optimal orthogonal matrix, which could potentially contain reflections in addition to rotations. Imagine that the point set P is a perfect reflection of Q - we will then find that reflection, which aligns the two point sets perfectly and yields zero energy (8) - the global minimum in this case. However, if we restrict ourselves to rotations only, there might not be a rotation that perfectly aligns the points.

Checking whether $R=V U^{T}$ is a rotation is simple: if $\operatorname{det}\left(V U^{T}\right)=-1$ it contains reflection, otherwise $\operatorname{det}\left(V U^{T}\right)=+1$. Assume $\operatorname{det}\left(V U^{T}\right)=-1$: this means that the global maximum of $\operatorname{tr}(\Sigma M)$ is generally not attainable by a rotation, and we need to look for the "next best thing". Let us look for other (local) maxima of $\operatorname{tr}(\Sigma M)$ as a function of M 's diagonal values $m_{i i}$:

$$
\begin{equation*}
\operatorname{tr}(\Sigma M)=\sigma_{1} m_{11}+\sigma_{2} m_{22}+\ldots+\sigma_{d} m_{d d}=: f\left(m_{11}, \ldots, m_{d d}\right) \tag{22}
\end{equation*}
$$

If we consider the $m_{i i}$'s as variables, the domain of $\left(m_{11}, \ldots, m_{d d}\right)$ is a subset of $[-1,1]^{d}$. The function f is linear in the $m_{i i}$'s, so it attains its extrema on the boundary of the domain (no extrema on the interior). Since our domain is rectilinear, the extrema will be attained at the vertices $(\pm 1, \pm 1, \ldots, \pm 1)$. We had to rule out $(1,1, \ldots, 1)$ since that gave a reflection, therefore the next best shot is $(1,1, \ldots, 1,-1)$:

$$
\begin{equation*}
\operatorname{tr}(\Sigma M)=\sigma_{1}+\sigma_{2}+\ldots+\sigma_{d-1}-\sigma_{d} \tag{23}
\end{equation*}
$$

This is larger than any other combination (except $(1,1, \ldots, 1)$) because σ_{d} is the smallest singular value.

To summarize, we arrive at the fact that if $\operatorname{det}\left(V U^{T}\right)=-1$, we need

$$
M=V^{T} R U=\left(\begin{array}{cccc}
1 & & & \tag{24}\\
& 1 & & \\
& & \ddots & \\
& & & \\
& & & - \\
& & & -1
\end{array}\right) \quad \Rightarrow \quad R=V\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & \\
& & & -1
\end{array}\right) U^{T} .
$$

We can write a general formula that encompasses both cases, $\operatorname{det}\left(V U^{T}\right)=1$ and $\operatorname{det}\left(V U^{T}\right)=-1$:

$$
R=V\left(\begin{array}{cccc}
1 & & & \tag{25}\\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
& & & \operatorname{det}\left(V U^{T}\right)
\end{array}\right) U^{T} .
$$

4 Rigid motion computation - summary

Let us summarize the steps to computing the optimal translation \mathbf{t} and rotation R that minimize

$$
\sum_{i=1}^{n} w_{i}\left\|\left(R \mathbf{p}_{i}+\mathbf{t}\right)-\mathbf{q}_{i}\right\|^{2}
$$

(1) Compute the weighted centroids of both point sets:

$$
\overline{\mathbf{p}}=\frac{\sum_{i=1}^{n} w_{i} \mathbf{p}_{i}}{\sum_{i=1}^{n} w_{i}}, \quad \overline{\mathbf{q}}=\frac{\sum_{i=1}^{n} w_{i} \mathbf{q}_{i}}{\sum_{i=1}^{n} w_{i}}
$$

(2) Compute the centered vectors

$$
\mathbf{x}_{i}:=\mathbf{p}_{i}-\overline{\mathbf{p}}, \quad \mathbf{y}_{i}:=\mathbf{q}_{i}-\overline{\mathbf{q}}, \quad i=1,2, \ldots, n
$$

(3) Compute the $d \times d$ covariance matrix

$$
S=X W Y^{T}
$$

where X and Y are the $d \times n$ matrices that have \mathbf{x}_{i} and \mathbf{y}_{i} as their columns, respectively, and $W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$.
(4) Compute the singular value decomposition $S=U \Sigma V^{T}$. The rotation we are looking for is then

$$
R=V\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & \\
& & & \\
& & \\
& \\
& \\
& \\
\end{array}\right) U^{T} .
$$

(5) Compute the optimal translation as

$$
\mathbf{t}=\overline{\mathbf{q}}-R \overline{\mathbf{p}}
$$

