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Abstract

This note summarizes the steps to computing the rigid transformation that aligns
two sets of points.
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1 Problem statement

Let P = {p1,p2, . . . ,pn} and Q = {q1,q2, . . . ,qn} be two sets of correspond-
ing points in Rd. We wish to find a rigid transformation that optimally aligns
the two sets in the least squares sense, i.e., we seek a rotation R and a trans-
lation vector t such that

(R, t) = armgin
R,t

n∑
i=1

wi ‖(Rpi + t)− qi‖2 , (1)

where wi > 0 are weights for each point pair.

In the following we will detail the derivation of R and t; readers that are
interested in the final recipe may skip the proofs and go directly Section 4.

2 Computing the translation

Assume R is fixed and denote F (t) =
∑n
i=1wi ‖(Rpi + t)− qi‖2. We can find

the optimal translation by taking the derivative of F w.r.t. t and searching
for its roots:

0 =
∂F

∂t
=

n∑
i=1

2wi (Rpi + t− qi) =

= 2t

(
n∑
i=1

wi

)
+ 2R

(
n∑
i=1

wipi

)
− 2

n∑
i=1

wiqi. (2)
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Denote

p̄ =

∑n
i=1wipi∑n
i=1wi

, q̄ =

∑n
i=1wiqi∑n
i=1wi

. (3)

By rearranging the terms of (2) we get

t = q̄−Rp̄. (4)

In other words, the optimal translation t maps the transformed weighted cen-
troid of P to the weighted centroid of Q. Let us plug the optimal t into our
objective function:

n∑
i=1

wi ‖(Rpi + t)− qi‖2 =
n∑
i=1

wi ‖Rpi + q̄−Rp̄− qi‖2 = (5)

=
n∑
i=1

wi ‖R(pi − p̄)− (qi − q̄)‖2 . (6)

We can thus concentrate on computing the rotation R by restating the problem
such that the translation would be zero:

xi := pi − p̄, yi := qi − q̄. (7)

So we look for the optimal rotation R such that

R = argmin
R

n∑
i=1

wi ‖Rxi − yi‖2 . (8)

3 Computing the rotation

Let us simplify the expression we are trying to minimize in (8):

‖Rxi − yi‖2 = (Rxi − yi)
T (Rxi − yi) = (xTi R

T − yTi )(Rxi − yi) =

= xTi R
TRxi − yTi Rxi − xTi R

Tyi + yTi yi =

= xTi xi − yTi Rxi − xTi R
Tyi + yTi yi. (9)

We got the last step by remembering that rotation matrices imply RTR = I
(I is the identity matrix).

Note that xTi R
Tyi is a scalar: xTi has dimension 1 × d, RT is d × d and yi is

d× 1. For any scalar a we trivially have a = aT , therefore

xTi R
Tyi = (xTi R

Tyi)
T = yTi Rxi . (10)
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Therefore we have

‖Rxi − yi‖2 = xTi xi − 2yTi Rxi + yTi yi. (11)

Let us look at the minimization and substitute the above expression:

argmin
R

n∑
i=1

wi ‖Rxi − yi‖2 = argmin
R

n∑
i=1

wi(x
T
i xi − 2yTi Rxi + yTi yi) =

= argmin
R

(
n∑
i=1

wix
T
i xi − 2

n∑
i=1

wiy
T
i Rxi +

n∑
i=1

wiy
T
i yi

)
=

= argmin
R

(
−2

n∑
i=1

wiy
T
i Rxi

)
. (12)

The last step (removing
∑n
i=1wix

T
i xi and

∑n
i=1wiy

T
i yi) holds because these

expressions do not depend on R at all, so excluding them would not affect the
minimizer. The same holds for multiplication of the minimization expression
by a scalar, so we have

argmin
R

(
−2

n∑
i=1

wiy
T
i Rxi

)
= argmax

R

n∑
i=1

wiy
T
i Rxi. (13)

We note that
n∑
i=1

wiy
T
i Rxi = tr

(
WY TRX

)
, (14)

where W = diag(w1, . . . , wn) is an n × n diagonal matrix with the weight wi
on diagonal entry i; Y is the d×n matrix with yi as its columns and X is the
d × n matrix with xi as its columns. We remind the reader that the trace of
a square matrix is the sum of the elements on the diagonal: tr(A) =

∑n
i=1 aii.

See Figure 1 for an illustration of the algebraic manipulation.

Therefore we are looking for a rotation R that maximizes tr
(
WY TRX

)
. Ma-

trix trace has the property

tr(AB) = tr(BA) (15)

for any matrices A,B of compatible dimensions. Therefore

tr
(
WY TRX

)
= tr

(
(WY T )(RX)

)
= tr

(
RXWY T

)
. (16)

Let us denote the d× d “covariance” matrix S = XWY T . Take SVD of S:

S = UΣV T . (17)
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Fig. 1. Schematic explanation of
∑n

i=1 wiyTi Rxi = tr(WY TRX).

Now substitute the decomposition into the trace we are trying to maximize:

tr
(
RXWY T

)
= tr (RS) = tr

(
RUΣV T

)
= tr

(
ΣV TRU

)
. (18)

The last step was achieved using the property of trace (15). Note that V ,
R and U are all orthogonal matrices, so M = V TRU is also an orthogonal
matrix. This means that the columns of M are orthonormal vectors, and in
particular, mT

j mj = 1 for each M ’s column mj. Therefore all entries mij of
M are smaller than 1 in magnitude:

1 = mT
j mj =

d∑
i=1

m2
ij ⇒ mij ≤ 1 ⇒ |mij| < 1 . (19)

So what is the maximum possible value for tr(ΣM)? Remember that Σ is a
diagonal matrix with non-negative values σ1, σ2, . . . , σd ≥ 0 on the diagonal.
Therefore:

tr(ΣM) =

 σ1
σ2

...
σd

m11 m12 ... m1d
m21 m22 ... m2d

...
...

...
...

md1 md2 ... mdd

 =
d∑
i=1

σimii ≤
d∑
i=1

σi. (20)

Therefore the trace is maximized if mii = 1. Since M is an orthogonal matrix,
this means that M would have to be the identity matrix!

I = M = V TRU ⇒ V = RU ⇒ R = V UT . (21)
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Orientation rectification. The process we just described finds the optimal
orthogonal matrix, which could potentially contain reflections in addition to
rotations. Imagine that the point set P is a perfect reflection of Q – we will
then find that reflection, which aligns the two point sets perfectly and yields
zero energy (8) – the global minimum in this case. However, if we restrict
ourselves to rotations only, there might not be a rotation that perfectly aligns
the points.

Checking whether R = V UT is a rotation is simple: if det(V UT ) = −1 it
contains reflection, otherwise det(V UT ) = +1. Assume det(V UT ) = −1: this
means that the global maximum of tr(ΣM) is generally not attainable by a
rotation, and we need to look for the “next best thing”. Let us look for other
(local) maxima of tr(ΣM) as a function of M ’s diagonal values mii:

tr(ΣM) = σ1m11 + σ2m22 + . . .+ σdmdd =: f(m11, . . . ,mdd). (22)

If we consider the mii’s as variables, the domain of (m11, . . . ,mdd) is a subset
of [−1, 1]d. The function f is linear in the mii’s, so it attains its extrema on
the boundary of the domain (no extrema on the interior). Since our domain
is rectilinear, the extrema will be attained at the vertices (±1,±1, . . . ,±1).
We had to rule out (1, 1, . . . , 1) since that gave a reflection, therefore the next
best shot is (1, 1, . . . , 1,−1):

tr(ΣM) = σ1 + σ2 + . . .+ σd−1 − σd. (23)

This is larger than any other combination (except (1, 1, . . . , 1)) because σd is
the smallest singular value.

To summarize, we arrive at the fact that if det(V UT ) = −1, we need

M = V TRU =


1

1
...

1
−1

 ⇒ R = V


1

1
...

1
−1

UT . (24)

We can write a general formula that encompasses both cases, det(V UT ) = 1
and det(V UT ) = −1:

R = V


1

1
...

1
det(V UT )

UT . (25)
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4 Rigid motion computation – summary

Let us summarize the steps to computing the optimal translation t and rota-
tion R that minimize

n∑
i=1

wi ‖(Rpi + t)− qi‖2 .

(1) Compute the weighted centroids of both point sets:

p̄ =

∑n
i=1wipi∑n
i=1wi

, q̄ =

∑n
i=1wiqi∑n
i=1wi

.

(2) Compute the centered vectors

xi := pi − p̄, yi := qi − q̄, i = 1, 2, . . . , n.

(3) Compute the d× d covariance matrix

S = XWY T ,

where X and Y are the d × n matrices that have xi and yi as their
columns, respectively, and W = diag(w1, w2, . . . , wn).

(4) Compute the singular value decomposition S = UΣV T . The rotation we
are looking for is then

R = V


1

1
...

1
det(V UT )

UT .

(5) Compute the optimal translation as

t = q̄−Rp̄.
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