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Shape Modeling

Differential Geometry Primer
Smooth Definitions
Discrete Theory in a Nutshell
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= Geometry processing:
understand geometric
characteristics, e.g.

" smoothness
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Motivation

= Geometry processing:
understand geometric
characteristics, e.g.

= smoothness
" how shapes deform
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Curves

smooth definition

VA
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Curves

smooth definition

" Curves are 1-dimensional parameterizations

0:R—> R d=1,2,3,... o

t — p(?) e
* Planar curve: p(?) = (x(¢), v(?)) -
» Space curve: P(?) = (x(2), ¥(2), z(¢)) =1
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Parametric Curves

Examples

= Circlein 2D
p(?) = (r-cos(z), r-sin(z)) / \

t € [0, 2m) \/

m Bézier curve

p(7) = Z P, Bin (2) \ // \/
i=0 | "

P3
Po
Bn (t) — n ti (1 t)n—i Curve and control polygon Basis functions
i T .

l
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Curves

arc length parameterization

» Equal pace of the parameter
along the curve

= len (p(#1), P(,)) = |t — 1]
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Secant

= Aline through two points on the curve.

P
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Secant

= Aline through two points on the curve.

P
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Tangent

" The limiting secant as the two points come
together.

P
\
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Secant and tangent

parametric form

= Secant: p(?) — p(s)
* Tangent: p'(?) = (x'(¢), V' (2), ...)
= If tis arc-length: p

() = 1 -
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Tangent, normal, radius of curvature
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Circle of curvature

= Consider the circle passing through three
points on the curve...
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Circle of curvature

= _..the limiting circle as three points come
together.

P
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Radius of curvature, r
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Radius of curvature, r = 1/

Curvature

1
r P

K =
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Signed curvature

= Sense of traversal along curve.
+K

Andrew Nealen, Rutgers, 2009 2/25/2009 ; 17



Gauss map, N(p)

" Point on curve maps to point on unit circle.

N\ A
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Curvature =
change in normal direction

= Absolute curvature (assuming arc length ¢)

(o)

" Parameter-free view: via the Gauss map

\
N \

curve Gauss map curve Gauss map

K=|
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Curvature normal

parametric form

= Assume ¢ is arc-length parameter
p" (1) = xn(t)
7

n(z)

p(t)

p'(t) [Kobbelt and Schréder]



Curvature normal

parametric form

= Note: if the parameter has constant speed, it
only changes along the normal direction

" |[n other words,
" /
") LP'(0) .

<p'(t), p’(t)> =1 /differentiate both sides p(t)
(p"(),p'(1)) +(p'(t),p"(¢)) =0 p'(t)
(p"(1).p'(t))



Turning number, &k

= Number of orbits in Gaussian image.

@) @
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Turning number theorem

jKdS = 21tk
@)

= For a closed curve,
the integral of curvature is
an integer multiple of 2.

O ® ®



Discrete planar curves



Discrete planar curves

Piecewise linear curves
Not smooth at vertices
Can’t take derivatives

Generalize notions from
the smooth world for
the discrete case!



Tangents, normals

" For any point on the edge, the tangent is
simply the unit vector along the edge and the
normal is the perpendicular vector
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Tangents, normals

= For vertices, we have many options
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Tangents, normals

" Can choose to average the adjacent edge
normals
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Tangents, normals

= Weight by edge lengths

R
VA A A
NEWTIEY \
®
\ N °2
e1
@
2/25/2009

Andrew Nealen, Rutgers, 2009

29



Inscribed polygon, p

connection between discrete and smooth

" Finite number of vertices
each lying on the curve,
connected by straight edges.
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The length of a discrete curve

n+1

len(p) = Zd > p

=1

z—l—l _pi

= Sum of edge lengths



The length of a continuous curve

" Length of longest of all inscribed polygons.

sup len(p)

P
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The length of a continuous curve

= ..or take limit over a refinement sequence

lim len(p)

h—0
h = max edge length
®
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The length of a continuous curve

" |n the continuous form:

b

Ien:j

S=d

p’(s)] ds

Py
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The length of a continuous curve

= Compare:

b

Ien:J'

S=d

p’(s)] ds

len(p) = Z

n+1

pi+1 _pi

tangent length

L

Ps3

/p/'\r){
P1




The length of a continuous curve

= When the parameter is arc-length:

/
len = ﬂ
=0

[
p'(¢)|dt = [1dr =1
t=0
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Curvature of a discrete curve

" Curvature is the change in normal direction as
we travel along the curve

W e [1] /

no change along each edge —
curvature is zero along edges
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Curvature of a discrete curve

" Curvature is the change in normal direction as
we travel along the curve

normal changes at vertices —
record the turning angle!



Curvature of a discrete curve

" Curvature is the change in normal direction as
we travel along the curve

v

normal changes at vertices —
record the turning angle!



Curvature of a discrete curve

" Curvature is the change in normal direction as
we travel along the curve

’¢
’/
=)

same as the turning angle
between the edges



Signed curvature of a discrete curve

= Zero along the edges

* Turning angle at the vertices
= the change in normal direction

’
/
) (D a,)
S / a - —
it o«
® aj

oy, 0, >0, 03<0



Total signhed curvature

tsc(p) = Zn: 4
i=1

. U4
= Sum of turning K
angles ,’,0;1\
@




Discrete Gauss Map

" Edges map to points, vertices map to arcs.
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Discrete Gauss Map

* Turning number well-defined for discrete
curves.

AN
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Discrete Turning Number Theorem

tsc(p) = ) a, =2mk
i=1

= For a closed curve,
the total signed curvature is ,
. . ~ < )
an integer multiple of 2. \

= proof: sum of exterior angles



Structure preservation

= Arbitrary discrete curve

: di
=" total signed curvature obeys >Crete
Of contip,

discrete turning number theorem

Nalogye
Uoys theOrem

=| even coarse mesh (curve)

= which continuous theorems to preserve?

= that depends on the application...
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Convergence

= Consider refinement sequence

" length of inscribed polygon approaches length of
smooth curve

" in general, discrete measure approaches
continuous analogue
* which refinement sequence?
= depends on discrete operator
= pathological sequences may exist

" in what sense does the operator converge?
(point-wise, L,; linear, quadratic)



Curvature normal = length gradient

= Can use this to define discrete curvature!



Curvature normal = length gradient

N&”
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Curvature normal = length gradient

N&”
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Curvature normal = length gradient

N&st”
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Curvature normal = length gradient

N&”
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Curvature normal = length gradient

N&”
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Curvature normal = length gradient
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Structure-
preservation

For an arbitrary (even
coarse) discrete curve,
the discrete measure of
curvature obeys the
discrete turning number
theorem.
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Recap

Convergence

In the limit of a
refinement sequence,
discrete measures of
length and curvature
agree with continuous
measures.
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