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Chapter 1

Current Status

As of August 21, 2013, the vFEP program is a fully functional prototype. It should
be able to deliver the expected results. However, the program has not been extensively
tested and users should use it with cautions and carefully examine the results.

The documentation is far from complete and is still under construction.

The following reference should be cited if vFEP is utilized:

Lee, T. S., Radak, B..K.; Pabis A.; York, D. M.,
A New Maximum Likelihood Approach for Free Energy Profile Construction from Molec-

ular Simulations
Journal of Chemical Theory and Computation, 2013, 9:153-164
http://pubs.acs.org/doi/abs/10.1021/ct300703z
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Chapter 2

Install and run the vFEP program

2.1

Installation: Linux

You need to have

*

*

*

A Linux box (tested on Fedora 16 and 18.)
A C/C++ compiler installed.

The cmake utility installed (v2.6 or later, http://www.cmake.org/).
Fedora: sudo yum install cmake
Ubuntu: sudo apt-get install cmake

The boost library installed (v1.47.0 or late, http://www.boost.org/).
Fedora: sudo yum install boost-devel
Ubuntu: sudo apt-get install boost-devel

The wget and unzip utilities for direct downloading AlgLib and dLib libraries.

Steps:

*

*

*

Download the vFEP package from http://sites.google.com/site/cancersimulation/software.
Untar /unzip the tar file by " tar -zzof vFEP.tar.gz”.

Make sure your boost include files are included in the searching path defined by the
environmental variable "INCLUDE” | if not, modify the variable ” Boost INCLUDE_DIR”
in vFEP /cmake/CMakeLists.txt.

Run the script "Install”. You are done. The resulting binary will be in bin/ .

The Install script will try to download the AlgLib and the dLib libraries. If the
downloading fails, you can manually download them and copy your own AlgLib
source files into 3rdParty/alglib/src and dLib source files into 3rdParty/dLib. Re-
run the Install script afterward.
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* The user manual is in VFEP /doc/Manual.pdf

The Linux build has been tested with gce version 4.7.2, cmake 2.6, and boost 1.47 and
1.50.

2.2 Installation: Windows

You need to have
* A PC with Windows 7 64 bit OS.
Steps:

* Download the vFEP executable (VFEP.exe) from http://sites.google.com/site/cancersim
and you are done.

The Windows build has been compiled and tested with Microsoft Visual C++ 2008 on
a PC with Windows 7 Professional 64 bit. It likely will work on PCs with Windows XP
(SP2 64 bit) and Windows 8 (64bit).

Please send emails to cancersimulation@gmail.com if you have
problems and/or comments.

2.3 Run the vFEP program

Steps:

* Prepare a metafile containing the list of your data files with the fol-
lowing format for each line:

filename epl fcl [ep2 fc2]

filename: data filename for each umbrella sampling simulation
epl: center position of the first dimension

fcl: force constant of the first dimension

ep2: optional, center position of the second dimension

fc2: optional, force constant of the second dimension

When ep2 and fc2 both are present, the vFEP program will run in
the 2D mode otherwise in the 1D mode.
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Note that the format is the same as the one used by WHAM for 1D
cases BUT different for 2D cases.

* Run the program by

vFEP -m "metafile name” -fep "output free energy profile”

* The output free energy profile has the following format for each line:

z [y] energy

x: the coordinate of the first dimension
y: the coordinate of the second dimension (for 2D cases only)
energy: the relative free energy in kcal/mole at this point

Other options can be found by "vFEP -h” and described in Chapter 3:
Program Options.
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Chapter 3

Program options

Available options

option | arg. default | description

-h help

File options

option | arg. default | description

-m string (required) the metafile for umbrella sampling (also turn on
umbrella sampling type calculation)

-b string the metafile for BEDAM (also turn on BEDAM
type calculation)

-fep string Output the free energy profile to file.

-log string Output the program progress to file.

-7 string Output the relative free energy shifts between

windows.

Data options

11
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option

arg.

default

description

integer

dataFrequency: must be an integer

=0,1,-1: use all data points (default).

>1: only pickup data points every dataFre-
quence, e.g., dataFrequency=10 will cause that
only the 1st, 11th, 21th , 31th... data points
will be used.

<-1: only 1/(-dataFrequency) portion of data
points will be used (randomly pickup), e.g., if
dataFrequence=-10, 1/10 of total data points
will be randomely picked up and used.

-x0,-y0

double

Specify the reference point of x (and y for 2D)
where the output function value will be ad-
justed to zero.

-sl

double

Specify the scalar factor for the coordinate for
the 1st dimension

-s2

double

Specify the scalar factor for the coordinate for
the 2st dimension

-jrl

Add the polar coordinate Jocabian correction
to the first dimension.

-jrl

Add the polar coordinate Jocabian correction
to the second dimension.

-Sym

Create the missing symmetrical windows in a
2D simulation.

-nsplit

integer

Split each window into nsplit (per dimension)
child widows. Only applicable to windows with
zero biasing potentials.

-no_pb

Turn off the automatic addition of periodic
boundary window pairs.

Numerical options
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option

arg.

default

description

-grid

nteger

200

Number of grid points (of each dimension) of
the free energy profile.

string

MLE

the method to be used for umbrella sampling
data:

method=MLE: use maximum likelihoond
method, i.e., vVFEP. (default, 1D and 2D).
method=Derivative, Ul: use umbrella integra-
tion. (1D only)

method=WHAM, Wham: use WHAM. (1D
only)

string

cubic

the interpolation type used in vFEP
interpolation=cubic, spline, ¢, s: use cubic
spline (default, 1D and 2D).
interpolation=rational, r: use rational interpo-
lation. (1D only)

-nl

nteger

Number of spline nodes used in the first dimen-
sion (Default: automatically determined by the
program.)

-n2

mteger

Number of spline nodes used in the second di-
mension (Default: automatically determined by
the program.)

_nq

mteger

12 or 48

Number of quadrature points used for integra-
tion (default: 48 for Gauss-Hermite quadrature
and 12 for Gauss-Legendre quadrature).

-qgl

off

Use Gauss-Legendre quadrature rules (de-
fauls: use Gauss-Hermite quadrature rules with
non-zero biasing potential, otherwise Gauss-
Legendre.).

Path Analysis (2D only)
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option | arg. default | description

-path string filename : Output the path points to file.

-st string filename : Output the stationary points to file.

-pd1 double | 1.0 / | Resolutions for creating the paths and the sta-
(number | tionary points for the first dimension. Default:
grids) 1.0/ (number grids).

-pd2 double | 1.0 / | Resolutions for creating the paths and the sta-
(number | tionary points for the second dimension. De-
grids) fault: 1.0/(number grids).

-max (off) In the path analysis, maximum points are in-

cluded(i.e., the points with 2nd derivatives;0).
Default: only minimum points.

Other conditions
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option | arg. default | description
-X double | input The minimal value of the range of output free
data energy profile for the first dimension.
-X double | input The maximal value of the range of output free
data energy profile for the first dimension.
-y double | input The minimal value of the range of output free
data energy profile for the second dimension.
-Y double | input The maximal value of the range of output free
data energy profile for the second dimension.
-x, -X, -y -Y: Default values: The range(s) will
be the input data range(s).
-dx double | input The minimal value of the range of data to be
data used in analysis (the first dimension.)
-dX double | input The maximal value of the range of data to be
data used in analysis (the first dimension.)
-dy double | input The minimal value of the range of data to be
data used in analysis (the second dimension.)
-dY double | input The maximal value of the range of data to be
data used in analysis (the second dimension.)
-dx, -dX, -dy -dY: Default values: The range(s)
will be the input data range(s), i.e., all data will
be used in analysis.
-rl turn on periodical boundary conditions for the
first dimension: requires setting min and max
x by -x xmin and -X xmax
-12 turn on periodical boundary conditions for the
second dimension: requires setting min and
max y by -y xmin and -Y xmax
-T equivalent to ” -rl -r2 7, i.e. turn on periodical
boundary conditions for both dimensions.
-n integer must be a positive integer: Maximum number
of iterations in optimization. (default: no limit)
-tol double | le-6 The tolerance (of likelihood in unit of RT) to

stop optimization.




16

CHAPTER 3. PROGRAM OPTIONS



Chapter 4

Introduction

The vFEP method is intended to be used for the following purposes (for
1- and 2-D cases):

* To obtain the corresponding free energy profile from a set of umbrella
sampling simulations;

* To obtain the underlining free energy profile of set of observed data,
maybe a set of plain molecular dynamics (MD) or Monte Carlo (MC)
simulations, or just simply some data distribution.

The detailed list of its functionality, along with their usage, can be
found in the chapter ”Program Options”.

Free energy is a key concept in modern physical sciences and offers a
wealth of insights into complex molecular problems [1]. One dimensional
free energy profiles are routinely employed to study various molecular
systems with respect to a certain variable/coordinate and many enhanced
sampling methods for accurately accomplishing this task have been devel-
oped in the past decades[2].

One of the most widely used methods for determining free energy
surfaces for chemical reactions, where often there are geometric coordi-
nates that are known to be aligned with the overall reaction coordinate,
is the “umbrella sampling” technique [3, 4]. Combining stratification
with equilibrium and statically biased sampling, umbrella sampling is par-
ticularly amenable to parallel execution, especially in high performance
distributed environments|[5, 6], as well as extension or combination with
replica exchange[7, 8] and alchemical simulation techniques|9].

17
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Although there are numerous well-developed and widely used meth-
ods to construct 1D free energy profiles from umbrella sampling simula-
tions, such as the weighted histogram analysis method [10, 11], the Um-
brella integration method (UT)[12], the multistate Bennett acceptance ra-
tio method (MBAR) [13, 14] and others [15, 16, 17, 18], publicly available
methods/programs for 2D cases are still very limited. Both WHAM and
MBAR algorithms have been extended and implemented to 2D cases, and
are publicly available at http://membrane.urmc.rochester.edu/content/wham
and http://simtk.org/home/pymbar, respectively. [19, 14]. 2D-UT [20]
and GAMUS[17, 21] implementations and applications have also been re-
ported but they are not publicly available. Nevertheless, due to the two
key difficulties in umbrella sampling methods, the problem of “data re-
weighting” and of “data representation”, the cost of such calculations can
still be quite prohibitive, especially in two or higher dimensions. Here we
briefly review these two major problems just described:

The need of overlap in data re-weighting: Traditional methods to con-
struct free energy profiles, such as WHAM][10] and MBAR|[13, 14], rely on
the knowledge of overlap between umbrella windows to properly re-weight
data for each window, although this can be practically and exactly solved
when there is only one sample set (i.e., one umbrella sampling window)
by the free energy perturbation (FEP)/Zwanzig relation and the related
expression for arbitrary mechanical observables [22, 3, 23]. This type of
approach inevitably requires significant overlap between windows in order
to sensibly construct the global free energy profile.

An alternative approach assumes the smoothness of the free energy pro-
file between nearby windows. The Umbrella Integration (UI) approach of
Késtner and Thiel [24, 25, 20] uses a Gaussian distribution to model the
un-weighted probability density for each umbrella window (or equivalently,
quadratic functions for the free energy profile) from which the analytic
derivatives are calculated and integrated in order to recover the global
probability density. Hence no explicit re-weighting is necessary. This ap-
proach is equivalent to assuming continuous first derivatives of the free
energy profile between windows. Instead of fix-positioned quadratic func-
tions, the 1D-vFEP method [26] utilizes cubic spline functions to model
the free energy profile, equivalent to assuming continuous first and sec-
ond derivatives of the free energy profile between windows. It has been
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demonstrated[26] in 1D cases that Ul and 1D-vFEP require less of a degree

of overlap between windows compared to WHAM and histogram-based
MBAR.

Data representation: In order to extract a distribution function from a set
of data, it is often necessary to employ a certain type of representation
of that function. This is commonly formulated as the density estimation
problem[27, 28]. Perhaps the simplest method of data representation is
to use a histogram estimator of the probability density [10, 9, 29]. How-
ever, this approach is frequently not numerically stable, especially when
the data is too sparse such that the width of histogram bins cannot be
made sufficiently small. A useful alternative approach can be to apply a
more robust kernel density estimator, but this too will fail with extremely
sparse data sets. A completely different type of approach is to fit the
overall density distribution through a pre-defined model[30] by optimiz-
ing the model parameters according to a merit function. Maragakis, et al.
suggested a maximum likelihood approach utilizing the Gaussian-Mixture
Model on umbrella sampling (GAMUS) for the global probability density
based on the re-weighted data [17, 31]. Similarly, Basner and Jarzyn-
ski proposed a binless estimator based upon the optimal correction to an
arbitrary reference distribution[32]. UI[24, 25, 20] uses Gaussian models
for the un-weighted probability densities and has also recently been ex-
tended to higher order densities (i.e. skewed Gaussians)[33]. It is well
known that such parametric approaches lead to a significant reduction in
the number of data points needed to obtain a converged result. How-
ever this often comes at the expense of increased bias depending on the
inherent accuracy of the parameteric form. For example, the approxima-
tions/assumptions of Ul require near-quadratic (or near quartic) behavior
of the local free energy surface for individual windows and this has been
demonstrated to be inaccurate in simulations with weak biasing poten-
tials [26]. This problem may be reduced by imposing stronger harmonic
biasing potentials but this often leads to lower overlap between windows
and hence the same kind of failures associated with sparsely populated
histogram estimators[4]. GAMUS has also been shown not to be ideal for
quantitatively describing details of the free energy surface[17].

The current vFEP implementation|[26] for constructing 1 and 2-dimensional
free energy profiles demonstrated that the method is able to effectively ad-
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dress the above two difficulties, and outperforms other methods in terms
of the amount and sparsity of the data needed to construct the overall
free energy profiles.



Chapter 5

Theory

Here we briefly describe the maximum likelihood method utilized in the
present work, beginning with a clarification of what is the difference be-
tween the terms "probability” and ”likelihood” used in this context. In
statistical modeling, probability refers to the possible outcome of data,
and is usually modeled by a fixed functional form and a variable set of
parameters. On the other hand, likelihood refers to how likely a given
model can describe a set of observed outcome data. [34] Hence,

e Probability: p({z,}|{f,}) is the probability model, defined by a
fixed functional form and variable set of parameters {6,,}, that re-
turns the probability of observing the data set {x,}; i.e., for a given

set of model parameters {60,,}, p({z,}|{0,.}) predicts the outcome for
the set of data {x,}: {0,,} — {z.}.

e Likelihood: L({6,,}|{z,}) is the likelihood that the observed data
set {x, } was generated by the probability distribution model defined
by the set of parameters {6,,}; i.e., L({0n}{zn}), for a given set of
observed data {x,}, provides an assessment of the goodness of the
model parameters: {x,} — {0,,}.

The maximum likelihood method, or maximum likelihood estimation (MLE),
[35, 36] is the procedure of finding the optimal set of parameters that
maximize the likelihood of the model probability distribution function to
represent a given set of observed data.

MLE begins with the definition of the likelihood function of the sam-
ple data. The likelihood function of a set of data is the probability of
obtaining that particular set of data, given the probability distribution

21
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model function defined by a chosen functional form along with a set of
trial model parameters. Here we consider the probability, p(z), of ob-
serving a molecular system at a particular value of a single generalized
coordinate x (the extension to multiple dimensions is straight forward).
This probability is given by

e—F(sc)

p(z) = Te Py (5.1)
where F'(x) = F(x)/(kgT) is the unitless scaled free energy profile, F(z) is
the free energy profile, kg is the Boltzmann constant and 7' is the absolute
temperature. Consider now a parametric model for the scaled free energy
profile F(z|{6,,}) where {6,,} is the set of parameters. The probability
distribution model, p(z|{6,,}), also contains the set of parameters, due to
its relation to F'(x|{6,,}). Now considering the probability, p({z,}|{0m})
of a sampled data set {x,}, if the sampling data points are independent
to each other, then:

pzn}{0m}) = p(x1, 22, .., 2n{On}) = p(21{0n}) p(22[{Om}) - - - p(2n]{Om}).
(5.2)

The likelihood L of the trial free energy profile F'{6,,} with the given

observed data set {x,} is:

N

LF{0,} x1,...,xn) = LHEOn} 21, ... 2N) = Hp(:cz\{em}) (5.3)

1=1

In the present work, instead of dealing with individual windows, we at-
tempt to find the optimal solution of the above equation by defining a
global function F'(z) with a set of defined parameters {6,,}. It is practical
to use the logarithm of the likelihood function, called the log-likelihood /:

({0} 21, 2x) = %mz _ %Zlnp(mn\{ﬁm}). (5.4)

Since the likelihood is always positive and monotonic, there is no loss of
generality in formulating a variational principle based on the log-likelihood,
which offers some advantages in terms of numerical stability and is conven-
tional in the literature. Hereafter, we use the term ”likelihood” generically
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to refer to both the likelihood or the log-likelihood, and will reference spe-
cific equations when the mathematical distinction is necessary. The MLE
method estimates {6,,} by finding the values of {6,,} that maximize ¢ :

N
. A 1
({0, } x1, ..., xy) = argmax (({0,,}| z1, ..., x,) = arg max— E In p(x,|{0m})
(0,,)€0 ye0 N

n=1

(5.5)
where © defines the space that {6,,} can span. If a biasing potential W (z)
is applied in the ath window in a set of umbrella sampling simulations,
the probability of finding the system with a certain coordinate value x is:
p*(z) = %exp{—[F(x)—l—W“(x)]},Where 7% = / exp{—[F(z)+W(x)]}dx

- (5.6)

Suppose that for the simulation of the ath window, there are N® points
observed with coordinate values {z{'}. Since they are observed points, the
probability of each point is equal with value 1/N®. The likelihood of the
whole system with an overall free energy profile F'(x) can be expressed
as the combination of the likelihood of individual windows obtained from
eq. (5.4) and eq. (5.6) as:

windows

UF)= ) ({0u}{an})

(67

windows 1 datapoints
(67 « « « «
=— Y {mz + e Z [F (%) + W (a )]} (5.7)
« (3

where {c*} are the combination weights defining the relative contribution
of likelihood from different windows when combining the local likelihood
into a global likelihood. When assuming all windows contribute equally,
the ¢ can simply be set to be equal, 7.e., ¢* = 1. It can also be shown
that, in the exact sampling limit, the global optimal F' is also the optimal
F' for each individual window, i.e., the choice of {¢*} does not affect the
resulting optimal F'(x) (see Supporting Information). In practice, for finite
sampling, we observe that the overall result is largely insensitive to the
choice of ¢*, and for the present work, we choose ¢* = 1 for all windows
(also see Supporting Information). In the above equation for the global

likelihood function, we have used F' as the argument to emphasize that
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optimization of the likelihood function is with respect to the free energy
profile ' (by varying the {6,,} parameters).

There remains the task of finding the F that maximizes ((F). Note
that in the above equation the term W%(z¢) is constant and does not
need to be evaluated if the goal is to maximize the likelihood. Also,
the term —InZ? is equivalent to the relative free energies (or free energy
shifts) between windows in other re-weighting schemes. In the present
VFEP approach, the “re-weighting” procedure is implicitly accomplished
through the normalization against the global trial function F.

[e%

An alternate strategy is to model F'(x) locally in the region of each win-
dow, F'*(x), and construct the global F(z) using the F'*(x) with the ob-
served data density as weighting. The only variable parameters in this ap-
proach are the relative free energy shifts between every window {f*} (the
reference free energy being arbitrary) that establish the relative weights
for each window. Thus, the global F(z) is defined by the parameter set
{f*} and a set of fixed local free energy profiles F*(z). Applying the
MLE procedure to F'(x) with respect to the parameter {f*} leads to the
WHAM and the MBAR equations [16, 13, 37, 14]. Note that within such
a context, MBAR is also a parametric procedure where the relative free
energy shifts of windows are the MLE parameters and local free energy
profiles are pre-defined in data fitting procedures, whereas the proposed
VFEP uses MLE parameters to construct the detailed overall free energy
profiles. In summary, the WHAM and MBAR formula are equivalent to
the MLE results when the global free energy profile is constructed from
the local free energy profiles and the relative free energies are used as the
parameters to optimize the likelihood.

In the present work, instead of dealing with individual windows, we
attempt to find the optimal solution of eq. (5.7) by defining a global func-
tion F'(x) with a set of defined parameters {0,,} (i.e. F(z)= F(z|{0.})).
The procedure is as follows:

1. Choose a trial function F'(x) with a initial parameter set {6,,}.

2. Evaluate the likelihood /(F) of the trial function F(z) according to
eq. (5.7).

3. Vary the parameter set {6,,} until the maximum of ¢(F) is reached.
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4. The trial F(x) with the maximal ¢(F) is the desired overall free en-
ergy profile.

For the 1D implementation, two types of analytic functions were selected
to model the overall free energy profile: a cubic spline function[38] and
a rational interpolation function[39]. Both were originally designed for
interpolation usage. Nevertheless, one could treat the interpolation input
data as the variable parameters; for example, a cubic spline function needs
to have the {x;,y;} data nodes defined in order to build the desired cubic
spline interpolation, where x; is the independent variable and w; is the
corresponding observed function value. In this work, we select fixed z;
and treat y; as the MLE parameters to be optimized, e.g. a cubic spline
function defined by {z;, y;} will be the trial free energy function in eq. (5.7)
and the optimal free energy profile is reached through changing {y;}. This
is equivalent to assuming that the free energy profile varies slower than a
cubic polynomial between windows or that the first and second derivatives
of free energy profile are continuous between windows.

For the 2D implementation, we utilize 2D cubic spline functions to
model F' and search the optimal spine coefficients to maximize the like-
lihood function lf(F) Using 2D cubic splines is equivalent to assuming
that the free energy profile varies slower than a cubic polynomial between
windows or that the first and second derivatives of the free energy profile
are continuous between windows for both of the coordinates.
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