
CS 523: Computer Graphics, Spring 2011 

Shape Modeling

PCA Applications + SVD
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Reminder: PCA

� Find principal components of data points

� Orthogonal directions that are dominant in 

the data (have variance extrema)
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More applications of PCA
Morphable models of faces

� Data base of face scans: 3D geometry + texture (photo)

� 10,000 points in each scan

� x, y, z, R, G, B  − 6 numbers for each point

� Thus, each scan is a 10,000*6 = 60,000-dimensional vector
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See: V. Blanz and T. Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 99



� How to find interesting axes is this 60000-dimensional space?

� axes that measures age, gender, etc…

� There is hope: the faces are likely to be governed by a small set of 

parameters (much less than 60,000…)

age axis gender axis

FaceGen demo

More applications of PCA
Morphable models of faces
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Singular Value Decomposition
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Geometric analysis of linear 

transformations
� We want to know what a linear 

transformation A does 

� Need some simple and “comprehensible” 

representation of the matrix A

� Let’s look what A does to some vectors

� Since A(αv) = αA(v), it’s enough to look at vectors v of 

unit length
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Geometric analysis of linear 

transformations

� A linear (non-singular) transform A always 

takes hyper-spheres to hyper-ellipses.
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Geometric analysis of linear 

transformations

� Thus, one good way to understand what A

does is to find which vectors are mapped to 

the “main axes” of the ellipsoid
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Geometric analysis of linear 

transformations

� If A is symmetric:   A = V D V
T
,   V orthogonal

� The eigenvectors of A are the axes of the 

ellipse
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Symmetric matrix: 

eigendecomposition

� In this case A is just a scaling matrix. The 

eigendecomposition of A tells us which 

orthogonal axes it scales, and by how much
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General linear transformations: 

Singular Value Decomposition

� In general A will also contain rotations, not 

just scales
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General linear transformations: 

Singular Value Decomposition

A V = U Σ

i i i iAvi = σi ui ,  σi≥ 0
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Some history

� SVD was discovered by the following people:

E. Beltrami

(1835 − 1900)

M. Jordan

(1838 − 1922)

J. Sylvester

(1814 − 1897)

H. Weyl

(1885-1955)

E. Schmidt

(1876-1959)
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UA

SVD

� SVD exists for any matrix

� Formal definition:

� For square matrices A ∈ R
n×n

, there exist orthogonal 

matrices U, V ∈ R
n×n

and a diagonal matrix Σ, such that all 

the diagonal values σi of Σ are non-negative and
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SVD

� The diagonal values of Σ are called the singular values. It is 

accustomed to sort them: σ1 ≥ σ2≥ … ≥ σn

� The columns of U (u1, …, un) are called the left singular 

vectors. They are the axes of the ellipsoid.

� The columns of V (v1, …, vn) are called the right singular 

vectors. They are the preimages of the axes of the ellipsoid.
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Reduced SVD

� For rectangular matrices, we have two forms 

of SVD. The reduced SVD looks like this:

� The columns of U are orthonormal

� Cheaper form for computation and storage

=

UA V
TΣ
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� We can complete U to a full orthogonal matrix 

and pad Σ by zeros accordingly

Full SVD

=
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SVD
Applications

� There are stable numerical algorithms to 

compute SVD (albeit not cheap). Once you 

have it, you have many things:

� Matrix inverse → can solve square linear systems

� Numerical rank of a matrix

� Can solve linear least-squares systems

� PCA

� Many more…
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Matrix inverse and 

solving linear systems

� Matrix inverse

� So, to solve 
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Matrix rank

� The rank of A is the number of non-zero 

singular values

Andrew Nealen, Rutgers, 2011 2/15/2011

n

=m

σ1

σ2

σn

20

UA V
TΣ



Numerical rank

� If there are very small singular values, then A

is close to being singular. We can set a 

threshold t, so that

numeric_rank(A) = #{σi | σi > t}

� Using SVD is a numerically stable way! The 

determinant is not a good way to check 

singularity 
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PCA

� Construct the matrix X of the centered data points

� The principal axes are eigenvectors of S = XX
T
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PCA

� We can compute the principal components by 

SVD of X:

X = UΣV
T

XX
T
= UΣV

T
(UΣV

T
)
T

=

= UΣV
T
VΣU

T
= UΣ2

U
T

� Thus, the left singular vectors of X are the 

principal components! We sort them by the 

size of the singular values of X.
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Least-squares rotation with SVD
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Shape matching

� We have two objects in correspondence

� Want to find the rigid transformation that 

aligns them
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Shape matching

� When the objects are aligned, the lengths of 

the connecting lines are small
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Optimal local rotation

� We will use this for mesh deformation
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Shape matching – formalization 

� Align two point sets

� Find a translation vector t and rotation matrix 

R so that
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Shape matching – solution 

� Solve translation and rotation separately

� If (R, t) is the optimal transformation, then the 

point sets {Rpi + t} and {qi} have the same 

centers of mass
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Finding the rotation R

� To find the optimal R, we bring the centroids

of both point sets to the origin

� We want to find R that minimizes
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Finding the rotation R
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These terms do not depend on R,

so we can ignore them in the minimization
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Finding the rotation R
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this is a scalar
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Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011 33

( )RXYtrR
T

1

T =∑
=

n

i

ii xy ( ) ∑
=

=
n

i

ii

1

AAtr

R

=

−− T

1y

−− T

2y

−− T

ny

M

|

|

1x
|

|

2x
|

|

nxL
−− T

1y

−− T

2y

−− T

ny

M

|

|

1Rx
|

|

2Rx
|

|

nxRL

Y
T

X



Finding the rotation R
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Finding the rotation R

� Find R that maximizes

� Let’s do SVD on S = XY
T
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Finding the rotation R
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� We want to maximize 
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Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011 37

� Our best shot is mii = 1, i.e. to make V
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Summary of rigid alignment

� Translate the input points to the centroids

� Compute the “covariance matrix”

� Compute the SVD of S

� The optimal orthogonal R is
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Sign correction

� It is possible that det(VU
T
) = –1 : sometimes 

reflection is the best orthogonal transform
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Sign correction

� It is possible that det(VU
T
) = –1 : sometimes 

reflection is the best orthogonal transform
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Sign correction

� It is possible that det(VU
T
) = –1 : sometimes 

reflection is the best orthogonal transform

� To restrict ourselves to rotations only:

take the last column of V (corresponding to 

the smallest singular value) and invert its sign.

� Why? See the PDF…
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Complexity

� Numerical SVD is an expensive operation 

O(min(mn2,nm2))

� We always need to pay attention to the 

dimensions of the matrix we’re applying SVD 

to.
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SVD for animation compression

Chicken animation

See:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000

Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004

Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007
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3D animations

� Each frame is a 3D model (mesh)
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3D animations

� Connectivity is usually constant (at least on large segments of 

the animation)

� The geometry changes in each frame → vast amount of data!

13 seconds, 3000 vertices/frame,  26 MB
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Animation compression by 

dimensionality reduction

� The geometry of each frame is a vector in R
3N

space    

(N = #vertices)
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Animation compression by 

dimensionality reduction

� Find a few vectors of R
3N

that will best represent our frame 

vectors!
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Animation compression by 

dimensionality reduction

� The first principal components are the important ones
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Animation compression by 

dimensionality reduction

� Approximate each frame by linear combination of the first 

principal components

� The more components we use, the better the approximation

� Usually, the number of components needed is much smaller 

than f.

= u1 u2 u3α1 +   α2 +   α3
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Animation compression by 

dimensionality reduction

� Compressed representation:

� The chosen principal component vectors

� Coefficients αi for each frame

ui

Animation with only

2 principal components

Animation with

20 out of 400 principal 

components
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Eigenfaces

� Same principal components analysis can be applied to images
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Eigenfaces

� Each image is a vector in R
250⋅300

� Want to find the principal axes – vectors that best represent the input 

database of images
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Reconstruction with a few vectors

� Represent each image by the first few (n) principal components

( )1 1 2 2 1 2
, , ,

n n n
α α α α α α= + + =v u u uK K
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Face recognition

� Given a new image of a face,  w ∈ R
250⋅300

� Represent w using the first n PCA vectors:

� Now find an image in the database whose representation in 

the PCA basis is the closest:

( )1 1 2 2 1 2
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Non-linear dimensionality reduction

� More sophisticated methods can discover non-linear 

structures in the face datasets 

Isomap,

Science, Dec. 2000
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