#### CS 523: Computer Graphics, Spring 2011 Shape Modeling

PCA Applications + SVD

#### Reminder: PCA

- Find principal components of data points
- Orthogonal directions that are dominant in the data (have variance extrema)



Scatter matrix  $S = X X^{T}$  $S = \left( \begin{array}{c} V_{1} \\ V_{2} \end{array} \right) \left( \begin{array}{c} V_{1$ 

#### More applications of PCA

#### Morphable models of faces

Data base of face scans: 3D geometry + texture (photo)



- 10,000 points in each scan
- x, y, z, R, G, B − 6 numbers for each point
- Thus, each scan is a 10,000\*6 = 60,000-dimensional vector

See: V. Blanz and T. Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 99

### More applications of PCA

Morphable models of faces

- How to find interesting axes is this 60000-dimensional space?
  - axes that measures age, gender, etc...
  - There is hope: the faces are likely to be governed by a small set of parameters (much less than 60,000...)



age axis



gender axis

FaceGen demo

#### **Singular Value Decomposition**

- We want to know what a linear transformation A does
- Need some simple and "comprehensible" representation of the matrix A
- Let's look what A does to some vectors
  - Since  $A(\alpha v) = \alpha A(v)$ , it's enough to look at vectors v of <u>unit</u> length



 A linear (non-singular) transform A always takes hyper-spheres to hyper-ellipses.



Thus, one good way to understand what A does is to find which vectors are mapped to the "main axes" of the ellipsoid



- If A is symmetric:  $| A = V D V^{T}$ , V orthogonal
- The eigenvectors of A are the axes of the ellipse



### Symmetric matrix: eigendecomposition

In this case A is just a scaling matrix. The eigendecomposition of A tells us which orthogonal axes it scales, and by how much



### General linear transformations: Singular Value Decomposition

In general A will also contain rotations, not just scales †



### General linear transformations: Singular Value Decomposition



#### Some history

#### SVD was discovered by the following people:



E. Beltrami (1835 – 1900)



M. Jordan (1838 – 1922)



J. Sylvester (1814 – 1897)



E. Schmidt (1876-1959)



H. Weyl (1885-1955)

Andrew Nealen, Rutgers, 2011

#### SVD

- SVD exists for any matrix
- Formal definition:
  - For square matrices  $A \in R^{n \times n}$ , there exist orthogonal matrices  $U, V \in R^{n \times n}$  and a diagonal matrix  $\Sigma$ , such that all the diagonal values  $\sigma_i$  of  $\Sigma$  are non-negative and



#### SVD

- The diagonal values of  $\Sigma$  are called the singular values. It is accustomed to sort them:  $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n$
- The columns of U (u<sub>1</sub>, ..., u<sub>n</sub>) are called the left singular vectors. They are the axes of the ellipsoid.
- The columns of V (v<sub>1</sub>, ..., v<sub>n</sub>) are called the right singular vectors. They are the preimages of the axes of the ellipsoid.



#### **Reduced SVD**

- For rectangular matrices, we have two forms of SVD. The reduced SVD looks like this:
  - The columns of U are orthonormal
  - Cheaper form for computation and storage



#### Full SVD

We can complete U to a full orthogonal matrix and pad Σ by zeros accordingly



#### **SVD** Applications

- There are stable numerical algorithms to compute SVD (albeit not cheap). Once you have it, you have many things:
  - Matrix inverse  $\rightarrow$  can solve square linear systems
  - Numerical rank of a matrix
  - Can solve linear least-squares systems
  - PCA
  - Many more...

# Matrix inverse and solving linear systems

Matrix inverse

$$\begin{split} \mathbf{A} &= \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \\ \mathbf{A}^{-1} &= \left( \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \right)^{-1} = \left( \mathbf{V}^{\mathrm{T}} \right)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{-1} = \\ &= \mathbf{V} \begin{pmatrix} \frac{1}{\sigma_{1}} & & \\ & \ddots & \\ & & \frac{1}{\sigma_{n}} \end{pmatrix} \mathbf{U}^{\mathrm{T}} \end{split}$$

• So, to solve Ax = b

$$\mathbf{x} = \mathbf{V}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathrm{T}}\mathbf{b}$$

#### Matrix rank

The rank of A is the number of non-zero singular values



#### Numerical rank

- If there are very small singular values, then A is close to being singular. We can set a threshold *t*, so that numeric\_rank(A) = #{σ<sub>i</sub> | σ<sub>i</sub> > t}
- Using SVD is a numerically stable way! The determinant is not a good way to check singularity

PCA

Construct the matrix X of the centered data points

$$\mathbf{X} = \begin{pmatrix} | & | & | \\ \mathbf{p}_1' & \mathbf{p}_2' & \cdots & \mathbf{p}_n' \\ | & | & | \end{pmatrix}$$

• The principal axes are eigenvectors of  $S = XX^T$ 

$$\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{U} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{d} \end{pmatrix} \mathbf{U}^{\mathrm{T}}$$

We can compute the principal components by SVD of X:

$$X = U\Sigma V^{T}$$
  

$$XX^{T} = U\Sigma V^{T} (U\Sigma V^{T})^{T} =$$
  

$$= U\Sigma V^{T} V\Sigma U^{T} = U\Sigma^{2} U^{T}$$

Thus, the left singular vectors of X are the principal components! We sort them by the size of the singular values of X.

#### Least-squares rotation with SVD

#### Shape matching

- We have two objects in correspondence
- Want to find the rigid transformation that aligns them



#### Shape matching

 When the objects are aligned, the lengths of the connecting lines are small



#### **Optimal local rotation**

We will use this for mesh deformation





#### Shape matching – formalization

Align two point sets

$$P = \{\mathbf{p}_1, ..., \mathbf{p}_n\}$$
 and  $Q = \{\mathbf{q}_1, ..., \mathbf{q}_n\}.$ 

Find a translation vector t and rotation matrix
 R so that

$$\sum_{i=1}^{n} \left\| \left( \mathbf{R} \mathbf{p}_{i} + \mathbf{t} \right) - \mathbf{q}_{i} \right\|^{2} \text{ is minimized}$$

#### Shape matching – solution

- Solve translation and rotation separately
  - If (R, t) is the optimal transformation, then the point sets {Rp<sub>i</sub> + t} and {q<sub>i</sub>} have the same centers of mass

To find the optimal R, we bring the centroids of both point sets to the origin

$$\mathbf{x}_i = \mathbf{p}_i - \overline{\mathbf{p}}$$
  $\mathbf{y}_i = \mathbf{q}_i - \overline{\mathbf{q}}$ 

We want to find R that minimizes

$$\sum_{i=1}^{n} \left\| \mathbf{R} \mathbf{x}_{i} - \mathbf{y}_{i} \right\|^{2}$$



$$\min_{\mathbf{R}} \sum_{i=1}^{n} \left( -\mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i} - \mathbf{x}_{i}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{y}_{i} \right) = \max_{\mathbf{R}} \sum_{i=1}^{n} \left( \mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i} + \mathbf{x}_{i}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{y}_{i} \right)$$

$$\operatorname{this} \text{ is a scalar}$$

$$\mathbf{x}_{i}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{y}_{i} = \left( \mathbf{x}_{i}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{y}_{i} \right)^{\mathrm{T}} = \mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i}$$

$$\Rightarrow \operatorname{argmax}_{\mathbf{R}} \sum_{i=1}^{n} \mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i}$$







$$\sum_{i=1}^{n} \mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i} = \mathrm{tr} \left( \mathbf{Y}^{\mathrm{T}} \mathbf{R} \mathbf{X} \right)$$

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii}$$



Find R that maximizes
 tr(Y<sup>T</sup>RX) = tr(RXY<sup>T</sup>) (because tr(AB) = tr(BA))
 Let's do SVD on S = XY<sup>T</sup>

We want to maximize

$$\operatorname{tr}(\Sigma(\mathbf{V}^{\mathrm{T}}\mathbf{R}\mathbf{U}))$$

orthogonal matrix all entries  $\leq 1$ 



$$\operatorname{tr}(\Sigma(\mathbf{V}^{\mathrm{T}}\mathbf{R}\mathbf{U})) = \sum_{i=1}^{3} \sigma_{i} \operatorname{m}_{ii} \leq \sum_{i=1}^{3} \sigma_{i}$$

$$\operatorname{tr}(\Sigma(\mathbf{V}^{\mathrm{T}}\mathbf{R}\mathbf{U})) = \sum_{i=1}^{3} \sigma_{i} \operatorname{m}_{ii} \leq \sum_{i=1}^{3} \sigma_{i}$$

• Our best shot is  $m_{ii} = 1$ , i.e. to make  $V^T R U = I$ 

$$V^{T}RU = I$$
$$RU = V$$
$$R = VU^{T}$$

#### Summary of rigid alignment

Translate the input points to the centroids

$$\mathbf{x}_i = \mathbf{p}_i - \overline{\mathbf{p}}$$
  $\mathbf{y}_i = \mathbf{q}_i - \overline{\mathbf{q}}$ 

Compute the "covariance matrix"

$$\mathbf{S} = \mathbf{X}\mathbf{Y}^{\mathrm{T}} = \sum_{i=1}^{n} \mathbf{x}_{i}\mathbf{y}_{i}^{\mathrm{T}}$$

- Compute the SVD of S  $S = U\Sigma V^{T}$
- The optimal orthogonal R is  $\mathbf{R} = \mathbf{V} \mathbf{U}^{^{\mathrm{T}}}$

#### Sign correction

■ It is possible that det(VU<sup>T</sup>) = -1 : sometimes reflection is the best orthogonal transform



#### Sign correction

■ It is possible that det(VU<sup>T</sup>) = -1 : sometimes reflection is the best orthogonal transform

#### Sign correction

- It is possible that det(VU<sup>T</sup>) = -1 : sometimes reflection is the best orthogonal transform
- To restrict ourselves to rotations only:
  - take the last column of V (corresponding to the smallest singular value) and invert its sign.
- Why? See the PDF...

#### Complexity

- Numerical SVD is an expensive operation O(min(mn<sup>2</sup>,nm<sup>2</sup>))
- We always need to pay attention to the dimensions of the matrix we're applying SVD to.

#### SVD for animation compression



**Chicken animation** 

See:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000 Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004 Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007 Andrew Nealen, Rutgers, 2011 2/15/2011

#### 3D animations

Each frame is a 3D model (mesh)



#### 3D animations

- Connectivity is usually constant (at least on large segments of the animation)
- The geometry changes in each frame → vast amount of data!



13 seconds, 3000 vertices/frame, 26 MB

 The geometry of each frame is a vector in R<sup>3N</sup> space (N = #vertices)



• Find a few vectors of  $R^{3N}$  that will best represent our frame vectors!



• The first principal components are the important ones



- Approximate each frame by linear combination of the first principal components
- The more components we use, the better the approximation
- Usually, the number of components needed is much smaller than f.



- Compressed representation:
  - The chosen principal component vectors
  - Coefficients  $\alpha_i$  for each frame





Animation with only 2 principal components



Animation with 20 out of 400 principal components

### Eigenfaces

Same principal components analysis can be applied to images



Andrew Nealen, Rutgers, 2011

### Eigenfaces

- Each image is a vector in R<sup>250.300</sup>
- Want to find the principal axes vectors that best represent the input database of images



Andrew Nealen, Rutgers, 2011

#### Reconstruction with a few vectors

Represent each image by the first few (n) principal components



$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

#### Face recognition

- Given a new image of a face,  $\mathbf{w} \in \mathbb{R}^{250 \cdot 300}$
- Represent w using the first n PCA vectors:

$$\mathbf{w} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

 Now find an image in the database whose representation in the PCA basis is the closest:

$$\mathbf{w}' = (\alpha'_1, \alpha'_2, \dots, \alpha'_n)$$
  
\langle \mathbf{w}', \mathbf{w} \rangle is the largest

The angle between  $\mathbf{w}$  and  $\mathbf{w}'$  is the smallest



W

Andrew Nealen, Rutger, 2011



#### Non-linear dimensionality reduction

 More sophisticated methods can discover non-linear structures in the face datasets



Isomap, Science, Dec. 2000