CS 523: Computer Graphics, Spring 2011

Shape Modeling

PCA Applications + SVD

Andrew Nealen, Rutgers, 2011 2/15/2011



Reminder: PCA

" Find principal components of data points

" Orthogonal directions that are dominant in
the data (have variance extrema)

Andrew Nealen, Rutgers, 2011

2/15/2011

Scatter matrix S =X X'




More applications of PCA

Morphable models of faces

= Data base of face scans: 3D geometry + texture (photo)

gecce

= 10,000 points in each scan
" X,V, 2 R, G, B —6 numbers for each point
= Thus, each scanis a 10,000*6 = 60,000-dimensional vector

See: V. Blanz and T. Vetter, A Morphable Model for the Synthesis of 3D Faces, SSIGGRAPH 99
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More applications of PCA

Morphable models of faces

= How to find interesting axes is this 60000-dimensional space?
= axes that measures age, gender, etc...

= There is hope: the faces are likely to be governed by a small set of
parameters (much less than 60,000...)

v
v

age axis gender axis

FaceGen demo
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Singular Value Decomposition



Geometric analysis of linear
transformations

= \We want to know what a linear
transformation A does

" Need some simple and “comprehensible”
representation of the matrix A

= |et’slook what A does to some vectors

= Since A(av) = aA(v), it’s enough to look at vectors v of
unit length
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Geometric analysis of linear
transformations

" Alinear (non-singular) transform A always
takes hyper-spheres to hyper-ellipses.
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Geometric analysis of linear
transformations

" Thus, one good way to understand what A
does is to find which vectors are mapped to
the “main axes” of the ellipsoid
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Geometric analysis of linear
transformations

" |f A is symmetric:

A=VDV' Vort

nogonal

" The eigenvectors of A are the axes of t

ellipse
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Symmetric matrix:
eigendecomposition

" |n this case A is just a scaling matrix. The
eigendecomposition of A tells us which
orthogonal axes it scales, and by how much

-




General linear transformations:
Singular Value Decomposition

" |n general A will also contain rotations, not

just scales 1
A= 4
A=UZV'

A:[u1 u, un]




General linear transformations:
Singular Value Decomposition

. A 4

AV=UZ

_61
orthonormal orthonormal
o,

Alv,v,.ov,] =[uu,...u,]

Av,=c;u;, ;20




Some history

= SVD was discovered by the following people:

E. Beltrami M. Jordan J. Sylvester
(1835 — 1900) (1838 — 1922) (1814 — 1897)

E. Schmidt H. Weyl
(1876-1959) (1885-1955)
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SVD

= SVD exists for any matrix
" Formal definition:

= For square matrices A € R, there exist orthogonal
matrices U, V € R"" and a diagonal matrix X, such that all
the diagonal values o, of X are non-negative and

A=UXV'

A U > V!
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SVD

" The diagonal values of 2 are called the singular values. It is
accustomed to sort them: 6, > c,= ... =2 G,

* The columnsof U (u,, ..., u,) are called the left singular
vectors. They are the axes of the ellipsoid.

* The columnsof V (v, ..., v ) are called the right singular
vectors. They are the preimages of the axes of the ellipsoid.

A=UXV'

A U > V!
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Reduced SVD

" For rectangular matrices, we have two forms
of SVD. The reduced SVD looks like this:

" The columns of U are orthonorma

" Cheaperform for computation and storage
A U > v
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Full SVD

" We can complete U to a full orthogonal matrix
and pad X by zeros accordingly
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SVD

Applications

" There are stable numerical algorithms to
compute SVD (albeit not cheap). Once you
have it, you have many things:

" Matrix inverse — can solve square linear systems
= Numerical rank of a matrix

= Can solve linear least-squares systems

= PCA

= Many more...



Matrix inverse and
solving linear systems

= Matrix inverse

A=UzV'
AT =(UzvT) =(VT)'s U =
o \
v U
\ o/

" So, to solve Ax=b

x=VX'U'D



Matrix rank

" The rank of A is the number of nhon-zero
singular values

A U 2

3

A
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Numerical rank

" |f there are very small singular values, then A
is close to being singular. We can set a
threshold ¢, so that
numeric_rank(A) = #{c;| ¢, >t}

= Using SVD is a numerically stable way! The
determinant is not a good way to check
singularity



PCA

" Construct the matrix X of the centered data points

(] A
X=|p P, = P,
. )
" The principal axes are eigenvectors of S = xx'
/,11 )
S=XX"'=U - U’

\ ’Id/



PCA

= We can compute the principal components by
SVD of X:

X=UxV'
XX'=UzV (UZV')' =
- UxVv'vzu' =Uuxu’

" Thus, the left singular vectors of X are the
principal components! We sort them by the
size of the singular values of X.



Least-squares rotation with SVD



Shape matching

= We have two objects in correspondence

= Want to find the rigid transformation that
aligns them

Andrew Nealen, Rutgers, 2011 2/15/2011 25



Shape matching

" When the objects are aligned, the lengths of
the connecting lines are small
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Optimal local rotation

= \We will use this for mesh deformation

g
: J2
Vi [ '
V. R, Vi
J1

Andrew Nealen, Rutgers, 2011 2/15/2011 27



Shape matching — formalization

= Align two point sets
pP={p, ...,p,} and O={q,, ..., q,}.

= Find a translation vector t and rotation matrix
R so that

2 . . . .
1S minimized

Z H(Rpi T t)_ q,
i=1



Shape matching — solution

= Solve translation and rotation separately

" If (R, t) is the optimal transformation, then the
point sets {Rp, + t} and {q,} have the same
centers of mass

_ IS _ 1
p:_zpi q:;Zqi
i=1

n 5

ﬁ:li(Rpi +t):R(lZn:pij+t:Rﬁ+t
n - i=1

n

t=q-Rp




Finding the rotation R

" To find the optimal R, we bring the centroids
of both point sets to the origin

X,=p,—P Y,=q,—q
= \We want to find R that minimizes

2 |Rx; -y,
i=1

2




Finding the rotation R

n

ZHRXi —Y; = Z(in —yi)T(in —yi):
i=1 i=1

B5 CONINAD

These terms do not depend on R,
so we can ignore them in the minimization




Finding the rotation R

o SRy o mp Sl sy

this is a scalar

x'R"y, = (x'R"y,) =yRx,

—

n
argmax )y, Rx,
R i=1




Finding the rotation R

1=1 S
vyl | | T | |
N Yy
_le . R X, X, X _le _ |IRx; Rx, Rx
2 | | 2 | |
p— °
T T
i -y,
Y' X
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Finding the rotation R

1=1 Rl

— yT — | | | yTRX

1 1 1
T ||Rx; Rx, Rx TR

Y, | | Y. RX,

T

ol T
y, Rx,
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Finding the rotation R

"= Find R that maximizes
tr(YTRX): tr(RXYT) (because tr(AB) = tr(BA))
= let’sdoSVDonS=XY"

S=XY'=UZV'
U
tr(RXY")=tr(RUZVT)= tr(£(V'RU))

| - o7 S o

orthogonal matrix



Finding the rotation R

= \We want to maximize
tr(z(V'RU))

orthogonal matrix
all entries<1




Finding the rotation R

3 3
a(Z(VRU)=Y6,m, <Y 0,
i=l1 i=1
" Our best shotism; =1, i.e. to make V'RU=1
V'RU=1
RU=V

R =VU'




Summary of rigid alignment

Translate the input points to the centroids

X, =P;,—P Y, =4, —q
Compute the “covariance matrix”
S=XY' =) xy,
i=1
Compute the SVD of S
S=UxV'

The optimal orthogonal R is
R=VU'



Sign correction

" |tis possible that det(VUT) = —1 : sometimes
reflection is the best orthogonal transform

W el
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Sign correction

" |tis possible that det(VUT) = —1 : sometimes
reflection is the best orthogonal transform
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Sign correction

" |tis possible that det(VUT) = —1 : sometimes
reflection is the best orthogonal transform

= To restrict ourselves to rotations only:
take the last column of V (corresponding to
the smallest singular value) and invert its sign.

= Why? See the PDF...



Complexity

= Numerical SVD is an expensive operation
O(min(mn?,nm?))

" We always need to pay attention to the
dimensions of the matrix we’re applying SVD
to.



SVD for animation compression

Chicken animation

See:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000
Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004

Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007
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3D animations

= Fach frame is a 3D model (mesh)
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3D animations

= Connectivity is usually constant (at least on large segments of
the animation)

= The geometry changes in each frame — vast amount of data!

13 seconds, 3000 vertices/frame, 26 MB

Andrew Nealen, Rutgers, 2011 2/15/2011

45



ion by
ity reduction

ION compress

Imat
Imens

An

ional

d

= The geometry of each frame

. 3N
In R™ space

IS a vector

(N = #vertices)
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Animation compression by
dimensionality reduction

3N

" Find a few vectors of R
vectors!

that will best represent our frame

U 3Nxf I V' &f

N

i
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Animation compression by

48
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Animation compression by
dimensionality reduction

Approximate each frame by linear combination of the first
principal components

The more components we use, the better the approximation

Usually, the number of components needed is much smaller
than f.




Animation compression by
dimensionality reduction

= Compressed representation:

= The chosen principal component vectors .

= Coefficients 04 for each frame

Animation with only Animation with

2 principal components 20 out of 400 principal
components
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Eigenfaces

= Same principal components analysis can be applied to images

¥
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Eigenfaces

. . . 250-300
= EachimageisavectorinR

= Want to find the principal axes — vectors that best represent the input
database of images
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Reconstruction with a few vectors

Represent each image by the first few (n) principal components

ES
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v=ou +a,u,+...au, =(a,a,,...,a,)
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Face recognition

, , 250-300
" Given anew image of aface, w € R

= Represent w using the first n PCA vectors:

w=au +ou,+...au =(a,a,...,a,)

n

= Now find an image in the database whose representation in
the PCA basis is the closest:

/ ! / 4
w =(a, a,..., )
<w’,w> is the largest

The angle between w and w' is the smallest

W
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Non-linear dimensionality reduction

= More sophisticated methods can discover non-linear
structures in the face datasets

Up-down pose

Isomap,
Science, Dec. 2000
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