CS 523: Computer Graphics, Spring 2011 Shape Modeling

PCA Applications + SVD

Reminder: PCA

- Find principal components of data points
- Orthogonal directions that are dominant in the data (have variance extrema)

Scatter matrix $\mathrm{S}=\mathrm{XX}^{\mathrm{T}}$

More applications of PCA Morphable models of faces

- Data base of face scans: 3D geometry + texture (photo)

- 10,000 points in each scan
- $x, y, z, R, G, B-6$ numbers for each point
- Thus, each scan is a $10,000 * 6=\mathbf{6 0 , 0 0 0}-$ dimensional vector

See: V. Blanz and T. Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 99

More applications of PCA Morphable models of faces

- How to find interesting axes is this 60000-dimensional space?
- axes that measures age, gender, etc...
- There is hope: the faces are likely to be governed by a small set of parameters (much less than 60,000...)

FaceGen demo

Singular Value Decomposition

Geometric analysis of linear transformations

- We want to know what a linear transformation A does
- Need some simple and "comprehensible" representation of the matrix A
- Let's look what A does to some vectors
- Since $A(\alpha \mathbf{v})=\alpha A(\mathbf{v})$, it's enough to look at vectors \mathbf{v} of unit length

Geometric analysis of linear transformations

- A linear (non-singular) transform A always takes hyper-spheres to hyper-ellipses.

Geometric analysis of linear transformations

- Thus, one good way to understand what A does is to find which vectors are mapped to the "main axes" of the ellipsoid

Geometric analysis of linear transformations

- If A is symmetric: $\mathrm{A}=\mathrm{V} \mathrm{D} \mathrm{V}^{\mathrm{T}}$, V orthogonal
- The eigenvectors of A are the axes of the ellipse

Symmetric matrix: eigendecomposition

- In this case A is just a scaling matrix. The eigendecomposition of A tells us which orthogonal axes it scales, and by how much

$$
A \mathbf{V}_{i}=\lambda_{i} \mathbf{V}_{i}
$$

General linear transformations: Singular Value Decomposition

- In general A will also contain rotations, not just scales

$$
A=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{n}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}
\end{array}\right]^{T}
$$

General linear transformations:

 Singular Value Decomposition

$$
\mathrm{AV}=\mathrm{U} \Sigma
$$

$$
\begin{array}{cc}
\text { orthonormal } \\
A\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} \ldots \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} \ldots \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{n}
\end{array}\right], ~
\end{array}
$$

$$
\mathrm{A} \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}, \quad \sigma_{i} \geq 0
$$

Some history

- SVD was discovered by the following people:

E. Beltrami
(1835-1900)

M. Jordan
(1838-1922)

J. Sylvester (1814-1897)

E. Schmidt
(1876-1959)

SVD

- SVD exists for any matrix
- Formal definition:
- For square matrices $\mathrm{A} \in R^{n \times n}$, there exist orthogonal matrices $\mathrm{U}, \mathrm{V} \in R^{n \times n}$ and a diagonal matrix Σ, such that all the diagonal values σ_{i} of Σ are non-negative and

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

SVD

- The diagonal values of Σ are called the singular values. It is accustomed to sort them: $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\mathrm{n}}$
- The columns of $U\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$ are called the left singular vectors. They are the axes of the ellipsoid.
- The columns of $\mathrm{V}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right)$ are called the right singular vectors. They are the preimages of the axes of the ellipsoid.

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

Reduced SVD

- For rectangular matrices, we have two forms of SVD. The reduced SVD looks like this:
- The columns of U are orthonormal
- Cheaper form for computation and storage

Full SVD

- We can complete U to a full orthogonal matrix and pad Σ by zeros accordingly

Applications

- There are stable numerical algorithms to compute SVD (albeit not cheap). Once you have it, you have many things:
- Matrix inverse \rightarrow can solve square linear systems
- Numerical rank of a matrix
- Can solve linear least-squares systems
- PCA
- Many more...

Matrix inverse and solving linear systems

- Matrix inverse

$$
\begin{aligned}
\mathrm{A} & =\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}} \\
\mathrm{~A}^{-1} & =\left(\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{V}^{\mathrm{T}}\right)^{-1} \Sigma^{-1} \mathrm{U}^{-1}= \\
& =\mathrm{V}\left(\begin{array}{ccc}
\frac{1}{\sigma_{1}} & & \\
& \ddots & \\
& & \frac{1}{\sigma_{\mathrm{n}}}
\end{array}\right) \mathrm{U}^{\mathrm{T}}
\end{aligned}
$$

- So, to solve $A x=b$

$$
\mathbf{x}=\mathrm{V} \Sigma^{-1} \mathrm{U}^{\mathrm{T}} \mathbf{b}
$$

Matrix rank

- The rank of A is the number of non-zero singular values

Numerical rank

- If there are very small singular values, then A is close to being singular. We can set a threshold t, so that numeric_rank(A) $=\#\left\{\sigma_{i} \mid \sigma_{i}>\mathrm{t}\right\}$
- Using SVD is a numerically stable way! The determinant is not a good way to check singularity

PCA

- Construct the matrix X of the centered data points

$$
\mathrm{X}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{p}_{1}^{\prime} & \mathbf{p}_{2}^{\prime} & \cdots & \mathbf{p}_{n}^{\prime} \\
\mid & \mid & & \mid
\end{array}\right)
$$

- The principal axes are eigenvectors of $S=X X^{T}$

$$
\mathrm{S}=\mathrm{XX}^{\mathrm{T}}=\mathrm{U}\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{d}
\end{array}\right) \mathrm{U}^{\mathrm{T}}
$$

PCA

- We can compute the principal components by SVD of X :

$$
\begin{aligned}
\mathrm{X} & =U \Sigma V^{\mathrm{T}} \\
X X^{\mathrm{T}} & =\mathrm{U} \Sigma V^{\mathrm{T}}\left(\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}\right)^{\mathrm{T}}= \\
& =\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}} \mathrm{~V} \Sigma \mathrm{U}^{\mathrm{T}}=\mathrm{U} \underline{\Sigma}^{2} \mathrm{U}^{\mathrm{T}}
\end{aligned}
$$

- Thus, the left singular vectors of X are the principal components! We sort them by the size of the singular values of X.

Least-squares rotation with SVD

Shape matching

- We have two objects in correspondence
- Want to find the rigid transformation that aligns them

Shape matching

- When the objects are aligned, the lengths of the connecting lines are small

Optimal local rotation

- We will use this for mesh deformation

Shape matching - formalization

- Align two point sets

$$
P=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\} \text { and } Q=\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\} .
$$

- Find a translation vector t and rotation matrix R so that

$$
\sum_{i=1}^{n}\left\|\left(\mathrm{R} \mathbf{p}_{i}+\mathbf{t}\right)-\mathbf{q}_{i}\right\|^{2} \quad \text { is minimized }
$$

Shape matching - solution

- Solve translation and rotation separately
- If (R, t) is the optimal transformation, then the point sets $\left\{R \mathbf{p}_{i}+\mathbf{t}\right\}$ and $\left\{\mathbf{q}_{i}\right\}$ have the same centers of mass

$$
\begin{gathered}
\overline{\mathbf{p}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{i} \quad \overline{\mathbf{q}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{q}_{i} \\
\overline{\mathbf{q}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathrm{R} \mathbf{p}_{i}+\mathbf{t}\right)=\mathrm{R}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{i}\right)+\mathbf{t}=\mathrm{R} \overline{\mathbf{p}}+\mathbf{t} \\
\Downarrow \\
\mathbf{t}=\overline{\mathbf{q}}-\mathrm{R} \overline{\mathbf{p}}
\end{gathered}
$$

Finding the rotation R

- To find the optimal R, we bring the centroids of both point sets to the origin

$$
\mathbf{x}_{i}=\mathbf{p}_{i}-\overline{\mathbf{p}} \quad \mathbf{y}_{i}=\mathbf{q}_{i}-\overline{\mathbf{q}}
$$

- We want to find R that minimizes

$$
\sum_{i=1}^{n}\left\|\mathrm{R} \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2}
$$

Finding the rotation R

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|\mathrm{R} \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2}=\sum_{i=1}^{n}\left(\mathrm{R} \mathbf{x}_{i}-\mathbf{y}_{i}\right)^{\mathrm{T}}\left(\mathrm{R} \mathbf{x}_{i}-\mathbf{y}_{i}\right)= \\
& =\sum_{i=1}^{n}(\underbrace{\mathrm{I}}_{\text {(} \mathbf{x}_{i}^{\mathrm{T}} \underbrace{\mathrm{R} \mathrm{R}} \mathbf{x}_{i}}-\mathbf{y}_{i}^{\mathrm{T}} \mathrm{R} \mathbf{x}_{i}-\mathbf{x}_{i}^{\mathrm{T}} \mathrm{R}^{\mathrm{T}} \mathbf{y}_{i}+\underbrace{\mathrm{T}}_{i} \mathbf{y}_{i}) \\
& \begin{array}{l}
\text { These terms do not depend on } \mathrm{R}, \\
\text { so we can ignore them in the minimazaion }
\end{array}
\end{aligned}
$$

Finding the rotation R

$$
\begin{aligned}
& \min _{\mathrm{R}} \sum_{i=1}^{n}\left(-\mathbf{y}_{i}^{\mathrm{T}} \mathrm{R} \mathbf{x}_{i}-\mathbf{x}_{i}^{\mathrm{T}} \mathrm{R}^{\mathrm{T}} \mathbf{y}_{i}\right)=\max _{\mathrm{R}} \sum_{i=1}^{n}\left(\mathbf{y}_{i}^{\mathrm{T}} \mathrm{R} \mathbf{x}_{i}+\underset{\text { this is scalar }}{\left.\mathbf{x}_{i}^{\mathrm{T}} \mathrm{R}^{\mathrm{T}} \mathbf{y}_{i}\right)}\right. \\
& \mathbf{x}_{i}^{\mathrm{T}} \mathrm{R}^{\mathrm{T}} \mathbf{y}_{i}=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathrm{R}^{\mathrm{T}} \mathbf{y}_{i}\right)^{\mathrm{T}}=\mathbf{y}_{i}^{\mathrm{T} \mathrm{R} \mathbf{x}_{i}} \\
& \Rightarrow \underset{\mathrm{R}}{\operatorname{argmax}} \sum_{i=1}^{n} \mathbf{y}_{i}^{\mathrm{T} \mathrm{R} \mathbf{x}_{i}}
\end{aligned}
$$

Finding the rotation R

$$
\sum_{i=1}^{n} \mathrm{y}_{i}^{\mathrm{T} \mathrm{R}} \mathrm{x}_{i}=\operatorname{tr}\left(\mathrm{Y}^{\mathrm{T} R X}\right)
$$

$$
\mathrm{Y}^{\mathrm{T}}
$$

X

Finding the rotation R

$$
\sum_{i=1}^{n} \mathrm{y}_{i}^{\left.\mathrm{T} \mathrm{Rx}_{i}=\operatorname{tr}\left(\mathrm{Y}^{\mathrm{T} R X}\right), ~\right)}
$$

Finding the rotation R

- Find R that maximizes

$$
\left.\operatorname{tr}\left(\mathrm{Y}^{\mathrm{T}} \mathrm{RX}\right)=\operatorname{tr}\left(\mathrm{RXY} \mathrm{~T}^{\mathrm{T}}\right) \quad \text { (because } \operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})\right)
$$

- Let's do SVD on $\mathrm{S}=\mathrm{XY}^{\mathrm{T}}$

$$
\begin{gathered}
\mathrm{S}=\mathrm{XY}^{\mathrm{T}}=U \Sigma \mathrm{~V}^{\mathrm{T}} \\
\Downarrow \\
\operatorname{tr}\left(\mathrm{RXY} Y^{\mathrm{T}}\right)=\operatorname{tr}(\underbrace{\mathrm{RUU}} \underbrace{\mathrm{~V}^{\mathrm{T}}})=\operatorname{tr}(\Sigma(\underbrace{\mathrm{V}^{\mathrm{T}} \mathrm{RU}}_{\text {orthogonal matrix }}))
\end{gathered}
$$

Finding the rotation R

- We want to maximize

$$
\begin{aligned}
& \operatorname{tr}(\sum(\underbrace{\mathrm{V}^{\mathrm{T}} \mathrm{RU}})) \\
& \text { orthogonal matrix } \\
& \text { all entries } \leq 1 \\
& \operatorname{tr}\left(\Sigma\left(\mathrm{~V}^{\mathrm{T}} \mathrm{RU}\right)\right)=\sum_{i=1}^{3} \sigma_{i} \mathrm{~m}_{i i} \leq \sum_{i=1}^{3} \sigma_{i}
\end{aligned}
$$

Finding the rotation R

$$
\operatorname{tr}\left(\Sigma\left(\mathrm{V}^{\mathrm{T}} \mathrm{RU}\right)\right)=\sum_{i=1}^{3} \sigma_{i} \mathrm{~m}_{i i} \leq \sum_{i=1}^{3} \sigma_{i}
$$

- Our best shot is $\mathrm{m}_{i i}=1$, i.e. to make $\mathrm{V}^{\mathrm{T}} \mathrm{RU}=\mathrm{I}$

$$
\begin{aligned}
& \mathrm{V}^{\mathrm{T}} \mathrm{RU}=\mathrm{I} \\
& \mathrm{RU}=\mathrm{V} \\
& \mathrm{R}=\mathrm{VU}^{\mathrm{T}}
\end{aligned}
$$

Summary of rigid alignment

- Translate the input points to the centroids

$$
\mathbf{x}_{i}=\mathbf{p}_{i}-\overline{\mathbf{p}} \quad \mathbf{y}_{i}=\mathbf{q}_{i}-\overline{\mathbf{q}}
$$

- Compute the "covariance matrix"

$$
\mathrm{S}=\mathrm{XY}^{\mathrm{T}}=\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{y}_{i}^{\mathrm{T}}
$$

- Compute the SVD of S

$$
\mathrm{S}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

- The optimal orthogonal R is

$$
\mathrm{R}=\mathrm{VU}^{\mathrm{T}}
$$

Sign correction

- It is possible that $\operatorname{det}\left(\mathrm{VU}^{\mathrm{T}}\right)=-1$: sometimes reflection is the best orthogonal transform

Sign correction

- It is possible that $\operatorname{det}\left(\mathrm{VU}^{\mathrm{T}}\right)=-1$: sometimes reflection is the best orthogonal transform

Sign correction

- It is possible that $\operatorname{det}\left(\mathrm{VU}^{\mathrm{T}}\right)=-1$: sometimes reflection is the best orthogonal transform

- To restrict ourselves to rotations only: take the last column of V (corresponding to the smallest singular value) and invert its sign.
- Why? See the PDF...

Complexity

- Numerical SVD is an expensive operation $\mathrm{O}\left(\mathrm{min}\left(\mathrm{mn}^{2}, \mathrm{~nm}^{2}\right)\right)$
- We always need to pay attention to the dimensions of the matrix we're applying SVD to.

SVD for animation compression

Chicken animation

See:
Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000
Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers\&Graphics 28(1): 25-34, 2004
Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007
Andrew Nealen, Rutgers, 2011
2/15/2011

3D animations

- Each frame is a 3D model (mesh)

3D animations

- Connectivity is usually constant (at least on large segments of the animation)
- The geometry changes in each frame \rightarrow vast amount of data!

13 seconds, 3000 vertices/frame, 26 MB

Animation compression by dimensionality reduction

- The geometry of each frame is a vector in $\mathrm{R}^{3 \mathrm{~N}}$ space ($\mathrm{N}=$ \#vertices)

2/15/2011
$3 N \times \# f$

Animation compression by dimensionality reduction

- Find a few vectors of $R^{3 N}$ that will best represent our frame vectors!

Animation compression by dimensionality reduction

- The first principal components are the important ones

Animation compression by dimensionality reduction

- Approximate each frame by linear combination of the first principal components
- The more components we use, the better the approximation
- Usually, the number of components needed is much smaller than f .

Animation compression by dimensionality reduction

- Compressed representation:
- The chosen principal component vectors
- Coefficients α_{i} for each frame

Eigenfaces

- Same principal components analysis can be applied to images

Eigenfaces

- Each image is a vector in $\mathrm{R}^{250 \cdot 300}$
- Want to find the principal axes - vectors that best represent the input database of images

Reconstruction with a few vectors

- Represent each image by the first few (n) principal components

r-arnab2.gif
$250 \times 300^{\circ}$
r-chris2.gif $250 \times 300^{\circ}$ 83 kb

$$
\mathbf{v}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\ldots \alpha_{n} \mathbf{u}_{n}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

Face recognition

- Given a new image of a face, $\mathbf{w} \in \mathrm{R}^{250 \cdot 300}$
- Represent \mathbf{w} using the first n PCA vectors:

$$
\mathbf{w}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\ldots \alpha_{n} \mathbf{u}_{n}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

- Now find an image in the database whose representation in the PCA basis is the closest:

$$
\begin{aligned}
& \mathbf{w}^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}\right) \\
& \left\langle\mathbf{w}^{\prime}, \mathbf{w}\right\rangle \text { is the largest }
\end{aligned}
$$

The angle between \mathbf{w} and \mathbf{w}^{\prime} is the smallest

Non-linear dimensionality reduction

- More sophisticated methods can discover non-linear structures in the face datasets

