
CS 523: Computer Graphics, Spring 2011

Shape Modeling

PCA Applications + SVD

Andrew Nealen, Rutgers, 2011 2/15/2011 1

Reminder: PCA

� Find principal components of data points

� Orthogonal directions that are dominant in

the data (have variance extrema)

Andrew Nealen, Rutgers, 2011 2/15/2011 2

x

y
x′

y′

S = v2v1 vd

λ1

λ2

λd

v2

v1

vd

Scatter matrix S = X X
T

More applications of PCA
Morphable models of faces

� Data base of face scans: 3D geometry + texture (photo)

� 10,000 points in each scan

� x, y, z, R, G, B − 6 numbers for each point

� Thus, each scan is a 10,000*6 = 60,000-dimensional vector

Andrew Nealen, Rutgers, 2011 2/15/2011 3

See: V. Blanz and T. Vetter, A Morphable Model for the Synthesis of 3D Faces, SIGGRAPH 99

� How to find interesting axes is this 60000-dimensional space?

� axes that measures age, gender, etc…

� There is hope: the faces are likely to be governed by a small set of

parameters (much less than 60,000…)

age axis gender axis

FaceGen demo

More applications of PCA
Morphable models of faces

2/15/2011Andrew Nealen, Rutgers, 2011 4

Singular Value Decomposition

Andrew Nealen, Rutgers, 2011 2/15/2011 5

Geometric analysis of linear

transformations
� We want to know what a linear

transformation A does

� Need some simple and “comprehensible”

representation of the matrix A

� Let’s look what A does to some vectors

� Since A(αv) = αA(v), it’s enough to look at vectors v of

unit length

Andrew Nealen, Rutgers, 2011 2/15/2011

A

6

Geometric analysis of linear

transformations

� A linear (non-singular) transform A always

takes hyper-spheres to hyper-ellipses.

Andrew Nealen, Rutgers, 2011 2/15/2011

A

A

7

Geometric analysis of linear

transformations

� Thus, one good way to understand what A

does is to find which vectors are mapped to

the “main axes” of the ellipsoid

Andrew Nealen, Rutgers, 2011 2/15/2011

A

A

8

Geometric analysis of linear

transformations

� If A is symmetric: A = V D V
T
, V orthogonal

� The eigenvectors of A are the axes of the

ellipse

Andrew Nealen, Rutgers, 2011 2/15/2011

A

9

Symmetric matrix:

eigendecomposition

� In this case A is just a scaling matrix. The

eigendecomposition of A tells us which

orthogonal axes it scales, and by how much

Andrew Nealen, Rutgers, 2011 2/15/2011

[] []

1

2

1 2 1 2

T

n n

n

A

λ
λ

λ

 
 
 =
 
 
  

v v v v v vK K
O

A

1
1

λ2

λ1

iiiA vv λ=
10

General linear transformations:

Singular Value Decomposition

� In general A will also contain rotations, not

just scales

Andrew Nealen, Rutgers, 2011 2/15/2011

A

[] []

1

2

1 2 1 2

T

n n

n

A

σ
σ

σ

 
 
 =
 
 
  

u u u v v vK K
O

1 1 σ2

σ1

T
A = U Σ V

T

11

[] []

1

2

1 2 1 2n n

n

A

σ
σ

σ

 
 
 =
 
 
  

v v v u u uK K
O

A

1 1 σ2

σ1

orthonormal orthonormal

2/15/2011Andrew Nealen, Rutgers, 2011

General linear transformations:

Singular Value Decomposition

A V = U Σ

i i i iAvi = σi ui , σi≥ 0

12

Some history

� SVD was discovered by the following people:

E. Beltrami

(1835 − 1900)

M. Jordan

(1838 − 1922)

J. Sylvester

(1814 − 1897)

H. Weyl

(1885-1955)

E. Schmidt

(1876-1959)

2/15/2011Andrew Nealen, Rutgers, 2011 13

UA

SVD

� SVD exists for any matrix

� Formal definition:

� For square matrices A ∈ R
n×n

, there exist orthogonal

matrices U, V ∈ R
n×n

and a diagonal matrix Σ, such that all

the diagonal values σi of Σ are non-negative and

Andrew Nealen, Rutgers, 2011 2/15/2011

=

T
A = U Σ V

T

V
TΣ

14

SVD

� The diagonal values of Σ are called the singular values. It is

accustomed to sort them: σ1 ≥ σ2≥ … ≥ σn

� The columns of U (u1, …, un) are called the left singular

vectors. They are the axes of the ellipsoid.

� The columns of V (v1, …, vn) are called the right singular

vectors. They are the preimages of the axes of the ellipsoid.

Andrew Nealen, Rutgers, 2011 2/15/2011

UA

=

T
A = U Σ V

T

V
TΣ

15

Reduced SVD

� For rectangular matrices, we have two forms

of SVD. The reduced SVD looks like this:

� The columns of U are orthonormal

� Cheaper form for computation and storage

=

UA V
TΣ

2/15/2011Andrew Nealen, Rutgers, 2011 16

� We can complete U to a full orthogonal matrix

and pad Σ by zeros accordingly

Full SVD

=

2/15/2011Andrew Nealen, Rutgers, 2011 17

UA V
TΣ

SVD
Applications

� There are stable numerical algorithms to

compute SVD (albeit not cheap). Once you

have it, you have many things:

� Matrix inverse → can solve square linear systems

� Numerical rank of a matrix

� Can solve linear least-squares systems

� PCA

� Many more…

Andrew Nealen, Rutgers, 2011 2/15/2011 18

Matrix inverse and

solving linear systems

� Matrix inverse

� So, to solve

Andrew Nealen, Rutgers, 2011 2/15/2011 19

() ()

T

1

1

111T1T1

T

UV

UVVUA

VUA

n

1

















=

=Σ=Σ=

Σ=

σ

σ

−−−−−

O

bx

bx

T1
UV

A

−Σ=

=

Matrix rank

� The rank of A is the number of non-zero

singular values

Andrew Nealen, Rutgers, 2011 2/15/2011

n

=m

σ1

σ2

σn

20

UA V
TΣ

Numerical rank

� If there are very small singular values, then A

is close to being singular. We can set a

threshold t, so that

numeric_rank(A) = #{σi | σi > t}

� Using SVD is a numerically stable way! The

determinant is not a good way to check

singularity

Andrew Nealen, Rutgers, 2011 2/15/2011 21

PCA

� Construct the matrix X of the centered data points

� The principal axes are eigenvectors of S = XX
T

Andrew Nealen, Rutgers, 2011 2/15/2011 22
















′′′=

|||

|||

nppp L21X

T

1

T UUXXS

















==

dλ

λ

O

PCA

� We can compute the principal components by

SVD of X:

X = UΣV
T

XX
T
= UΣV

T
(UΣV

T
)
T

=

= UΣV
T
VΣU

T
= UΣ2

U
T

� Thus, the left singular vectors of X are the

principal components! We sort them by the

size of the singular values of X.

Andrew Nealen, Rutgers, 2011 2/15/2011 23

Least-squares rotation with SVD

Andrew Nealen, Rutgers, 2011 2/15/2011 24

Shape matching

� We have two objects in correspondence

� Want to find the rigid transformation that

aligns them

Andrew Nealen, Rutgers, 2011 2/15/2011 25

Shape matching

� When the objects are aligned, the lengths of

the connecting lines are small

Andrew Nealen, Rutgers, 2011 2/15/2011 26

Optimal local rotation

� We will use this for mesh deformation

Andrew Nealen, Rutgers, 2011 2/15/2011 27

vi vj1

vj2
v׳i v׳j1

v׳j2

Ri

Shape matching – formalization

� Align two point sets

� Find a translation vector t and rotation matrix

R so that

Andrew Nealen, Rutgers, 2011 2/15/2011

{ } { }1 1, , and , , .n nP Q= =p p q qK K

28

() minimizedisR
1

2∑
=

−+
n

i

ii qtp

Shape matching – solution

� Solve translation and rotation separately

� If (R, t) is the optimal transformation, then the

point sets {Rpi + t} and {qi} have the same

centers of mass

Andrew Nealen, Rutgers, 2011 2/15/2011 29

∑
=

=
n

i

i
n 1

1
pp ∑

=

=
n

i

i
n 1

1
qq

()

pqt

tptptpq

R

R
1

RR
1

11

−=

⇓

+=+







=+= ∑∑

==

n

i

i

n

i

i
nn

Finding the rotation R

� To find the optimal R, we bring the centroids

of both point sets to the origin

� We want to find R that minimizes

Andrew Nealen, Rutgers, 2011 2/15/2011 30

qqyppx −=−= iiii

∑
=

−
n

i

ii

1

2
R yx

() ()

()∑

∑∑

=

==

+−−=

=−−=−

n

i

iiiiiiii

n

i

iiii

n

i

ii

1

TTTTTT

1

T

1

2

RRRR

RRR

yyyxxyxx

yxyxyx

Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011

These terms do not depend on R,

so we can ignore them in the minimization

31

I

Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011

this is a scalar

32

() ()

()

∑

∑∑

=

==

⇒

==

+=−−

n

i

ii

iiiiii

n

i

iiii

n

i

iiii

1

T

R

TTTTTT

1

TTT

R
1

TTT

R

Rargmax

RRR

RRmaxRRmin

xy

xyyxyx

yxxyyxxy

Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011 33

()RXYtrR
T

1

T =∑
=

n

i

ii xy () ∑
=

=
n

i

ii

1

AAtr

R

=

−− T

1y

−− T

2y

−− T

ny

M

|

|

1x
|

|

2x
|

|

nxL
−− T

1y

−− T

2y

−− T

ny

M

|

|

1Rx
|

|

2Rx
|

|

nxRL

Y
T

X

Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011 34

()RXYtrR
T

1

T =∑
=

n

i

ii xy () ∑
=

=
n

i

ii

1

AAtr

=

−− T

1y

−− T

2y

−− T

ny

M

|

|

1Rx
|

|

2Rx
|

|

nxRL
1

T

1 Rxy

2

T

2 Rxy

nn xy RT

O

Finding the rotation R

� Find R that maximizes

� Let’s do SVD on S = XY
T

Andrew Nealen, Rutgers, 2011 2/15/2011 35

() () tr(BA)) tr(AB)(becauseRXYtrRXYtr TT ==

() () ()()RUVtrVRUtrRXYtr

VUXYS

TTT

TT

Σ=Σ=

⇓

Σ==

orthogonal matrix

Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011 36

� We want to maximize

()()RUVtr TΣ

3

2

1

σ

σ

σ

33

22

11

m

m

m

L

MM

L

()() ∑∑
==

≤=Σ
3

1

3

1

T mRUVtr
i

i

i

iii σσ

orthogonal matrix

all entries ≤ 1

Finding the rotation R

Andrew Nealen, Rutgers, 2011 2/15/2011 37

� Our best shot is mii = 1, i.e. to make V
T
RU = I

()() ∑∑
==

≤=Σ
3

1

3

1

T mRUVtr
i

i

i

iii σσ

T

T

VUR

VRU

IRUV

=

=

=

Summary of rigid alignment

� Translate the input points to the centroids

� Compute the “covariance matrix”

� Compute the SVD of S

� The optimal orthogonal R is

Andrew Nealen, Rutgers, 2011 2/15/2011 38

qqyppx −=−= iiii

∑
=

==
n

i

ii

1

TTXYS yx

T
VUS Σ=

T
VUR =

Sign correction

� It is possible that det(VU
T
) = –1 : sometimes

reflection is the best orthogonal transform

Andrew Nealen, Rutgers, 2011 2/15/2011 39

Sign correction

� It is possible that det(VU
T
) = –1 : sometimes

reflection is the best orthogonal transform

Andrew Nealen, Rutgers, 2011 2/15/2011 40

Sign correction

� It is possible that det(VU
T
) = –1 : sometimes

reflection is the best orthogonal transform

� To restrict ourselves to rotations only:

take the last column of V (corresponding to

the smallest singular value) and invert its sign.

� Why? See the PDF…

Andrew Nealen, Rutgers, 2011 2/15/2011 41

Complexity

� Numerical SVD is an expensive operation

O(min(mn2,nm2))

� We always need to pay attention to the

dimensions of the matrix we’re applying SVD

to.

Andrew Nealen, Rutgers, 2011 2/15/2011 42

43

SVD for animation compression

Chicken animation

See:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000

Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004

Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007
2/15/2011Andrew Nealen, Rutgers, 2011

44

3D animations

� Each frame is a 3D model (mesh)

2/15/2011Andrew Nealen, Rutgers, 2011

45

3D animations

� Connectivity is usually constant (at least on large segments of

the animation)

� The geometry changes in each frame → vast amount of data!

13 seconds, 3000 vertices/frame, 26 MB

2/15/2011Andrew Nealen, Rutgers, 2011

46

Animation compression by

dimensionality reduction

� The geometry of each frame is a vector in R
3N

space

(N = #vertices)
1

1

1

N

N

N

x

x

y

y

z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 

M

M

M

3N × #f

2/15/2011Andrew Nealen, Rutgers, 2011

47

Animation compression by

dimensionality reduction

� Find a few vectors of R
3N

that will best represent our frame

vectors!

1

1

1

N

N

N

x

x

y

y

z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 

M

M

M

=

 
 
 
 
 
 
 
 
 
 
 
 
  
 

1

2

f

σ

σ

σ

 
 
 
 
  
 

O

1

2

f

σ
σ

σ

 
 
 
 
  
 

OV
T

U 3N×f Σ f×f V
T

f×f

1 2 f
σ σ σ≥ ≥ ≥K

2/15/2011Andrew Nealen, Rutgers, 2011

48

Animation compression by

dimensionality reduction

� The first principal components are the important ones

1

1

1

N

N

N

x

x

y

y

z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 

M

M

M

=

 
 
 
 
 
 
 
 
 
 
 
 
  
 

u1 u2 u3

1

2

f

σ

σ

σ

 
 
 
 
  
 

O
V

T

1

2

3

0

0

σ

σ
σ

 
 
 
 
 
 
 
 

2/15/2011Andrew Nealen, Rutgers, 2011

49

1

1

1

N

N

N

x

x

y

y

z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 

M

M

M

Animation compression by

dimensionality reduction

� Approximate each frame by linear combination of the first

principal components

� The more components we use, the better the approximation

� Usually, the number of components needed is much smaller

than f.

= u1 u2 u3α1 + α2 + α3

2/15/2011Andrew Nealen, Rutgers, 2011

50

Animation compression by

dimensionality reduction

� Compressed representation:

� The chosen principal component vectors

� Coefficients αi for each frame

ui

Animation with only

2 principal components

Animation with

20 out of 400 principal

components

2/15/2011Andrew Nealen, Rutgers, 2011

51

Eigenfaces

� Same principal components analysis can be applied to images

2/15/2011Andrew Nealen, Rutgers, 2011

52

Eigenfaces

� Each image is a vector in R
250⋅300

� Want to find the principal axes – vectors that best represent the input

database of images

2/15/2011Andrew Nealen, Rutgers, 2011

53

Reconstruction with a few vectors

� Represent each image by the first few (n) principal components

()1 1 2 2 1 2
, , ,

n n n
α α α α α α= + + =v u u uK K

2/15/2011Andrew Nealen, Rutgers, 2011

54

Face recognition

� Given a new image of a face, w ∈ R
250⋅300

� Represent w using the first n PCA vectors:

� Now find an image in the database whose representation in

the PCA basis is the closest:

()1 1 2 2 1 2
, , ,

n n n
α α α α α α= + + =w u u uK K

()1 2, , ,

, is the largest

nα α α′ ′ ′ ′=

′

w

w w

K

The angle between w and w′ is the smallest

w w′

w′

w

2/15/2011Andrew Nealen, Rutgers, 2011

55

Non-linear dimensionality reduction

� More sophisticated methods can discover non-linear

structures in the face datasets

Isomap,

Science, Dec. 2000

2/15/2011Andrew Nealen, Rutgers, 2011

