CS 523: Computer Graphics, Spring 2011
Interactive Shape Modeling

Space deformations
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Space Deformation

= Displacement function defined on the
ambient space
d:R° >R’
" Evaluate the function on the points of the
shape embedded in the space

Twistwarp
Global and local deformation of solids

[A. Barr, SIGGRAPH 84]




Freeform Deformations

= Control object

* Userdefines displacements d, for each element of
the control object

" Displacements are interpolated to the entire space
using basis functions B, (x) : R°—>R

d(x) = Zk: d, B,(x)

= Basis functions should be smooth
for aesthetic results
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Trivariate Tensor Product Bases

[Sederberg and Parry 86]

= |attice

= Control object

n

m

d(x,y,z)=). D> > d; N,()N,(»)N,(2)

trivariate tensor-product splines:
[

= Basis functions B;(x) are

4/5/2011
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Trivariate Tensor Product Bases

= Similar to the surface case
= Aliasing artifacts

" |nterpolate deformation constraints?

"= Onlyin least squares sense
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Lattice as Control Object

= Difficult to manipulate

" The control object is not
related to the shape of
the edited object

= Part of the shape in
close Euclidean distance
always deform similarly,
even if geodesically far
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Wires

[Singh and Fiume 98]

" Control objects are arbitrary space curves

" Can place curves along meaningful features of
the edited object

= Smooth deformations around the curve with

decreasing influence

ll
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Handle Metaphor

[RBF, Botsch and Kobbelt 05]

" Wish list for the displacement function d(x) :

" |nterpolate prescribed constraints
= Smooth, intuitive deformation

d(x;) = d,

(d:R*— RY
—_—

X > x+d(x)
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Volumetric Energy Minimization
[RBF, Botsch and Kobbelt 05]

" Minimize similar energies to surface case
9!3

" But displacements function lives in 3D...

“tfd, | +...+]d_| dvdydz — min

dxx

d,

dZZ

= Need a volumetric space tessellation?
*" No, same functionality provided by RBFs!



Radial Basis Functions
[RBF, Botsch and Kobbelt 05]

= Represent deformation by RBFs

d(x) :ij ’(P(ch —X||) + p(x)

= Triharmonic basis function ¢ (r) = r 3
= C’ boundary constraints
* Highly smooth / fair interpolation

J

SR3

2

d | +|d 2+...+\ *dxdydz — min

d zzZZ

XXX Xyy



RBF Fitting

[RBF, Botsch and Kobbelt 05]

= Represent deformation by RBFs

d(x)= 2w, -o(| ¢, ~x|) + p(x)

= RBF fitting
" |nterpolate displacement constraints

" Solve linear system for w;and p
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RBF Fitting

[RBF, Botsch and Kobbelt 05]

= Represent deformation by RBFs

d(x)= 2w, -o(| ¢, ~x|) + p(x)

= RBF evaluation
" Function d transforms points
= Jacobian Vd transforms normals

" Precompute basis functions
= Evaluate on the GPU!
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Local & Global Deformations
[RBF, Botsch and Kobbelt 05]
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Local & Global Deformations
[RBF, Botsch and Kobbelt 05]

1M vertices
movie
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Space Deformations

Summary so far

" Handle arbitrary input
= Meshes (also non-manifold)

" Point sets
= Polygonal soups

" 3M triangles

" 10k components
|

|

= Complexity mainly depends
on the control object, not Not manifold
the surface

Not oriented
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Space Deformations

Summary so far

" Handle arbitrary input
= Meshes (also non-manifold)
= Point sets
= Polygonal soups

F(z,y,2)=(F(z,y,2),G(z,y.2),H(z,y,2))

n Easier to analyze: functions {hen the Jacobian is the determinant
on Euclidean domain reor) =

= Volume preservation: |Jacobian| =1
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Space Deformations

Summary so far

" The deformation is only loosely aware of the
shape that is being edited

= Small Euclidean distance — similar deformation

" |ocal surface detail may be distortec
|

_ e
...J'\e-ﬂaﬁ’ \‘?QJ \J’k
NI N
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Cage-based Deformations
[Ju et al. 2005]

" Cage = crude version of the input shape
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Cage-based Deformations
[Ju et al. 2005]
" Cage = crude version of the input shape
= Polytope (not a lattice)

" Each point x in space is represented w.r.t. to
the cage elements using coordinate functions
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Cage-based Deformations
[Ju et al. 2005]

" Cage = crude version of the input shape
" Polytope (not a lattice)




Coordinate Functions

= Mean-value coordinates (Floater, Ju et al. 2005)
" Generalization of barycentric coordinates

" Closed-form solution for w, (x)
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Coordinate Functions

= Mean-value coordinates (Floater, Ju et al. 2005)

= Not necessarily positive on non-convex domains

MVC
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Coordinate Functions

» PMVC (Lipman et al. 2007) — ensures positivity,
but no longer closed-form and only C’

MVC
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Coordinate Functions

= Harmonic coordinates (Joshi et al. 2007)
* Harmonic functions 4(x) for each cage vertex p,

Ah=0
subject to: /; linear on the boundarys.t. 4. (p,) = Bij

= Solve

MVC
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Coordinate Functions

= Harmonic coordinates (Joshi et al. 2007)
* Harmonic functions 4(x) for each cage vertex p,

Ah=0
subject to: /; linear on the boundarys.t. 4. (p,) = 81-]-

= Solve

= Volumetric Laplace equation SHHEEHIE SR N

= Discretization, no closed-form &\ R

uuuuuuuuuuuuuuuuuuuuuu
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Coordinate Functions

= Harmonic coordinates (Joshi et al. 2007)




Coordinate Functions

" Green coordinates (Lipman et al. 2008)

" Observation: previous vertex-based basis
functions always lead to affine-invariance!
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Coordinate Functions

" Green coordinates (Lipman et al. 2008)

" Correction: Make the coordinates depend on
the cage faces as well
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Coordinate Functions

" Green coordinates (Lipman et al. 2008)
" Closed-form solution
" Conformal in 2D, quasi-conformal in 3D

GC MVC GC

Andrew Nealen, Rutgers, 2011 4/5/2011 32



Coordinate Functions

" Green coordinates (Lipman et al. 2008)
" Closed-form solution
" Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions
and extension to point handles : Weber et al. Eurographics 2009
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Nonlinear Space Deformations

" |nvolve nonlinear optimization
" Enjoy the advantages of space warps
= Additionally, have shape-preserving properties
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]
" Points or segments as control objects

" First developed in 2D and later extended to 3D
oy Zhu and Gortler (2007)
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Attach an affine transformation
to each point x R:

A(p)=M,p + t,

" The space warp:
X = A, (X)
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Handles p, are displaced to q;
" The local transformation at x:
Ap)=M,p +t, st
k
Zwi (X)HAX (pi) —(;
i=1

2 .
— min

" The weights depend on x:

w; (x) = ||p; — x|| >
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= No additional restriction on A (-) — affine
local transformations
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(-) to similarity
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(-) to similarity

*umwu.mn;;
k

|

‘ ‘)))!}}1]1’

.

Andrew Nealen, Rutgers, 2011 4/5/2011

40



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A () to rigid
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A () to rigid

hﬂf w5 W

i
dil ( Solve for M, like

il similarity and then
i normalize

e
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Examples
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As-Rigid-As-Possible Deformation
MLS approach — extension to 3D [Zhu & Gortler 2007]
" No linear expression for similarity in 3D
" |nstead, can solve for the minimizing rotation

2

k
arg min Z w,(x)|Rp, —q,

ReSO(3) ‘1

by polar decomposition of the 3x3 covariance
matrix



As-Rigid-As-Possible Deformation

MLS approach — extension to 3D [Zhu & Gortler 2007]

" Zhu and Gortler also replace the Euclidean
distance in the weights by “distance within the

shape”
i w (%) = d(p;. ) ™
Q Q

Andrew Nealen, Rutgers, 2011 45



As-Rigid-As-Possible Deformation

MLS approach — extension to 3D [Zhu & Gortler 2007]

" More results
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As-Rigid-As-Possible Deformation

Deformation Graph approach [Sumner et al. 2007]

= Surface handles as interface

= Underlying graph to represent the
deformation; nodes store rigid transformations

" Decoupling of handles from def. representation

Deformation Graph
Andrew Nealen, Rutgers, 2011
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Deformation Graph
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Deformation Graph
[Sumner et al. 2007]
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Deformation Graph
[Sumner et al. 2007]

Begin with an embedded object.
Nodes selected via uniform sampling; located at g]

One rigid transformation for each node. I{] , tj

Each node deforms nearby space.

Edges connect nodes of overlapping
influence.

o

Andrew Nealen, Rut kL 11 4/5/2011 50



Deformation Graph
[Sumner et al. 2007]

Begin with an embedded object.
Nodes selected via uniform sampling; located at g]

One rigid transformation for each node. I{] , tj

Each node deforms nearby space.

Edges connect nodes of overlapping
influence.
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Deformation Graph
[Sumner et al. 2007]

Influence of nearby transformations is blended.

point x transformed by node j

w (R (x—g,)+g, +t ]

J=1 blending weights

w,(x)=(- ‘x—ng/a’

I

X

Ms

max )
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Optimization
[Sumner et al. 2007]

Select & drag vertices of embedded
object.
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Optimization
[Sumner et al. 2007]

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters I{] , tj.
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min w E =+ wregE +w, E__

rot — rot
R, .t,..R .t
Graph Rotation Regularization Constraint
parameters term term term

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters I{] , t.
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mm  w E  +w E_ ~+ w E

reg con~—con
R,.t....R, .t

Rot(R) = (¢, -02)2 +(c, -03)2 +(c, '03)2 T

(¢, ¢ _1)2 +(c, ¢, _1)2 +(c; - ¢, _1)2

For detail preservation,
features should rotate and
not scale or skew.
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min w E + w E w. E
R,.t,,..R, .t rot™— rot

reg con~—con

— i ZaijRj(gk _gj)+gj +tj _(gk +tk)H2

j=1 keN(J)

where node j thinks where node k&
node k should go actually goes

Neighboring nodes should
agree on where they transform
each other.

Andrew Nealen, Rutg!rs, 011 4/5/2011

57



mm  w E  +w E_ ~+ w E

reg con~—con
R,.t.....R, .t

£ 2
= ZHVindex(l) ~ %Hz
=1

Handle vertices should go
where the user puts them.
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mm w E_ +w E_ + w_E

reg- ' reg con~—con
R, t.,...R, .t

,“%
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Results: Polygon Soup

[Sumner et al. 2007]
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Results: Giant Mesh

[Sumner et al. 2007]

LT
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Results: Detail Preservation
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Demo
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[Sumner et al. 2007]
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Discussion

" Decoupling of deformation complexity and
model complexity

" Nonlinear energy optimization — results
comparable to surface-based approaches

-
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