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Interactive Shape Modeling



Space Deformation

� Displacement function defined on the 

ambient space

� Evaluate the function on the points of the 

shape embedded in the space

d : R
3→ R

3

x′ = x + d(x)

Twist warp

Global and local deformation of solids

[A. Barr, SIGGRAPH 84]
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Freeform Deformations

� Control object

� User defines displacements di for each element of 

the control object

� Displacements are interpolated to the entire space 

using basis functions Bi (x) : R
3→ R

� Basis functions should be smooth

for aesthetic results
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� Control object = lattice

� Basis functions Bi (x) are 

trivariate tensor-product splines:
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Trivariate Tensor Product Bases
[Sederberg and Parry 86]
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� Similar to the surface case

� Aliasing artifacts

� Interpolate deformation constraints?

� Only in least squares sense

Trivariate Tensor Product Bases
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Lattice as Control Object

� Difficult to manipulate

� The control object is not 

related to the shape of 

the edited object

� Part of the shape in 

close Euclidean distance 

always deform similarly, 

even if geodesically far
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Wires
[Singh and Fiume 98]

� Control objects are arbitrary space curves

� Can place curves along meaningful features of 

the edited object

� Smooth deformations around the curve with 

decreasing influence
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� Wish list for the displacement function d(x) :

� Interpolate prescribed constraints

� Smooth, intuitive deformation

Handle Metaphor
[RBF, Botsch and Kobbelt 05]
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d(xi) = di

x → x + d(x)



Volumetric Energy Minimization
[RBF, Botsch and Kobbelt 05]

� Minimize similar energies to surface case 

� But displacements function lives in 3D...

� Need a volumetric space tessellation?

� No, same functionality provided by RBFs!
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Radial Basis Functions
[RBF, Botsch and Kobbelt 05]

� Represent deformation by RBFs

� Triharmonic basis function ϕ (r) = r 3

� C
2

boundary constraints

� Highly smooth / fair interpolation
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RBF Fitting
[RBF, Botsch and Kobbelt 05]

� Represent deformation by RBFs

� RBF fitting

� Interpolate displacement constraints

� Solve linear system for wj and p
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RBF Fitting
[RBF, Botsch and Kobbelt 05]

� Represent deformation by RBFs

� RBF evaluation

� Function d transforms points

� Jacobian∇d transforms normals

� Precompute basis functions

� Evaluate on the GPU!
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Local & Global Deformations
[RBF, Botsch and Kobbelt 05]
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Local & Global Deformations
[RBF, Botsch and Kobbelt 05]
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1M vertices

movie



Space Deformations
Summary so far

� Handle arbitrary input

� Meshes (also non-manifold)

� Point sets

� Polygonal soups

� …

� Complexity mainly depends

on the control object, not 

the surface
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� 3M triangles

� 10k components

� Not oriented

� Not manifold



Space Deformations
Summary so far
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� Handle arbitrary input

� Meshes (also non-manifold)

� Point sets

� Polygonal soups

� …

� Easier to analyze: functions

on Euclidean domain

� Volume preservation: |Jacobian| = 1



� The deformation is only loosely aware of the 

shape that is being edited

� Small Euclidean distance → similar deformation

� Local surface detail may be distorted

Andrew Nealen, Rutgers, 2011 4/5/2011 17

Space Deformations
Summary so far



Cage-based Deformations
[Ju et al. 2005]
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� Cage = crude version of the input shape

� Polytope (not a lattice)



Cage-based Deformations
[Ju et al. 2005]

� Cage = crude version of the input shape

� Polytope (not a lattice)

� Each point x in space is represented w.r.t. to 

the cage elements using coordinate functions
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Cage-based Deformations
[Ju et al. 2005]

� Cage = crude version of the input shape

� Polytope (not a lattice)

� Each point x in space is represented w.r.t. to 

the cage elements using coordinate functions
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Cage-based Deformations
[Ju et al. 2005]

� Cage = crude version of the input shape

� Polytope (not a lattice)
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� Cage = crude version of the input shape

� Polytope (not a lattice)
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Cage-based Deformations
[Ju et al. 2005]



� Cage = crude version of the input shape

� Polytope (not a lattice)
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Cage-based Deformations
[Ju et al. 2005]



Coordinate Functions
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� Mean-value coordinates (Floater, Ju et al. 2005)

� Generalization of barycentric coordinates

� Closed-form solution for wi (x)



Coordinate Functions
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� Mean-value coordinates (Floater, Ju et al. 2005)

� Not necessarily positive on non-convex domains

MVC



Coordinate Functions
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� PMVC (Lipman et al. 2007) – ensures positivity, 

but no longer closed-form and only C
0

MVC PMVC



Coordinate Functions

� Harmonic coordinates (Joshi et al. 2007)

� Harmonic functions hi(x) for each cage vertex pi

� Solve

subject to: hi linear on the boundary s.t. hi (pi) = δij
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∆ h = 0

MVC HC



Coordinate Functions

� Harmonic coordinates (Joshi et al. 2007)

� Harmonic functions hi(x) for each cage vertex pi

� Solve

subject to: hi linear on the boundary s.t. hi (pi) = δij

� Volumetric Laplace equation

� Discretization, no closed-form
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∆ h = 0



Coordinate Functions

� Harmonic coordinates (Joshi et al. 2007)
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� Green coordinates (Lipman et al. 2008)

� Observation: previous vertex-based basis 

functions always lead to affine-invariance!
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Coordinate Functions
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� Green coordinates (Lipman et al. 2008)

� Correction: Make the coordinates depend on 

the cage faces as well
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� Green coordinates (Lipman et al. 2008)

� Closed-form solution

� Conformal in 2D, quasi-conformal in 3D
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Coordinate Functions

MVCGC GC



� Green coordinates (Lipman et al. 2008)

� Closed-form solution

� Conformal in 2D, quasi-conformal in 3D
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Coordinate Functions

Alternative interpretation in 2D via holomorphic functions

and extension to point handles : Weber et al. Eurographics 2009



Nonlinear Space Deformations

� Involve nonlinear optimization

� Enjoy the advantages of space warps 

� Additionally, have shape-preserving properties
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� Points or segments as control objects

� First developed in 2D and later extended to 3D 

by Zhu and Gortler (2007)
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]



� Attach an affine transformation 

to each point x ∈ R3:

Ax(p) = Mxp + tx

� The space warp:

x→Ax(x) 
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]



� Handles pi are displaced to qi

� The local transformation at x:

Ax(p) = Mxp + tx s.t.

� The weights depend on x:

wi (x) = ||pi – x||
–2α
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]
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� No additional restriction on Ax(⋅⋅⋅⋅) – affine 

local transformations
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]



� Restrict Ax(⋅⋅⋅⋅) to similarity
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]



� Restrict Ax(⋅⋅⋅⋅) to similarity
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]
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� Restrict Ax(⋅⋅⋅⋅) to rigid
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]



� Restrict Ax(⋅⋅⋅⋅) to rigid
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Solve for Mx like 

similarity and then 

normalize
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� Examples
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As-Rigid-As-Possible Deformation
Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]



� No linear expression for similarity in 3D

� Instead, can solve for the minimizing rotation

by polar decomposition of the 3×3 covariance 

matrix 
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As-Rigid-As-Possible Deformation
MLS approach – extension to 3D [Zhu & Gortler 2007]
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� Zhu and Gortler also replace the Euclidean 

distance in the weights by “distance within the 

shape”
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As-Rigid-As-Possible Deformation
MLS approach – extension to 3D [Zhu & Gortler 2007]

wi (x) = d(pi , x)
–2α



� More results
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As-Rigid-As-Possible Deformation
MLS approach – extension to 3D [Zhu & Gortler 2007]



As-Rigid-As-Possible Deformation
Deformation Graph approach [Sumner et al. 2007]

� Surface handles as interface

� Underlying graph to represent the 

deformation; nodes store rigid transformations

� Decoupling of handles from def. representation

47
Deformation Graph Optimization Procedure
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Deformation Graph
[Sumner et al. 2007]
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Begin with an embedded object.

Deformation Graph
[Sumner et al. 2007]
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One rigid transformation for each node: Rj , tj

Each node deforms nearby space.

Edges connect nodes of overlapping

influence.

Begin with an embedded object.

Nodes selected via uniform sampling; located at   gj

Deformation Graph
[Sumner et al. 2007]
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One rigid transformation for each node: Rj , tj

Each node deforms nearby space.

Edges connect nodes of overlapping

influence.

Begin with an embedded object.

Nodes selected via uniform sampling; located at   gj

Deformation Graph
[Sumner et al. 2007]
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Influence of nearby transformations is blended.

blending weights
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Deformation Graph
[Sumner et al. 2007]
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Select & drag vertices of embedded 

object.

Optimization
[Sumner et al. 2007]
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Select & drag vertices of embedded 

object.

Optimization finds

deformation parameters  Rj , tj.

Optimization
[Sumner et al. 2007]
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Graph

parameters

Rotation

term

Regularization

term

Constraint

term

Select & drag vertices of embedded 

object.

Optimization finds

deformation parameters  Rj , tj.
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For detail preservation,

features should rotate and

not scale or skew.
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where node j thinks

node k should go

where node k

actually goes

Neighboring nodes should

agree on where they transform

each other.
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Handle vertices should go

where the user puts them.
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Results: Polygon Soup
[Sumner et al. 2007]
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Results: Giant Mesh
[Sumner et al. 2007]
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Results: Detail Preservation
[Sumner et al. 2007]
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Demo



Discussion

� Decoupling of deformation complexity and 

model complexity

� Nonlinear energy optimization – results 

comparable to surface-based approaches
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