CS 523: Computer Graphics, Spring 2011 Interactive Shape Modeling

Space deformations

Space Deformation

- Displacement function defined on the ambient space

$$
\mathbf{d}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}
$$

- Evaluate the function on the points of the shape embedded in the space

$$
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{d}(\mathbf{x})
$$

Twist warp

Global and local deformation of solids
[A. Barr, SIGGRAPH 84]

Freeform Deformations

- Control object
- User defines displacements \mathbf{d}_{i} for each element of the control object
- Displacements are interpolated to the entire space using basis functions $B_{i}(\mathbf{x}): \mathrm{R}^{3} \rightarrow \mathrm{R}$

$$
\mathbf{d}(\mathbf{x})=\sum_{i=1}^{k} \mathbf{d}_{i} B_{i}(\mathbf{x})
$$

- Basis functions should be smooth for aesthetic results

Trivariate Tensor Product Bases

[Sederberg and Parry 86]

- Control object = lattice
- Basis functions $B_{i}(\mathbf{x})$ are trivariate tensor-product splines:

$$
\mathbf{d}(x, y, z)=\sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{i j k} N_{i}(x) N_{j}(y) N_{i}(z)
$$

Trivariate Tensor Product Bases

- Similar to the surface case
- Aliasing artifacts
- Interpolate deformation constraints?
- Only in least squares sense

Lattice as Control Object

- Difficult to manipulate
- The control object is not related to the shape of the edited object
- Part of the shape in close Euclidean distance always deform similarly, even if geodesically far

Wires

[Singh and Fiume 98]

- Control objects are arbitrary space curves
- Can place curves along meaningful features of the edited object
- Smooth deformations around the curve with decreasing influence

Handle Metaphor

 [RBF, Botsch and Kobbelt 05]- Wish list for the displacement function $\mathbf{d}(\mathbf{x})$:
- Interpolate prescribed constraints
- Smooth, intuitive deformation

Volumetric Energy Minimization
 [RBF, Botsch and Kobbelt 05]

- Minimize similar energies to surface case

$$
\int_{\mathfrak{R}^{3}}\left\|\mathbf{d}_{x x}\right\|^{2}+\left\|\mathbf{d}_{x y}\right\|^{2}+\ldots+\left\|\mathbf{d}_{z z}\right\|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \rightarrow \min
$$

- But displacements function lives in 3D...
- Need a volumetric space tessellation?
- No, same functionality provided by RBFs!

Radial Basis Functions [RBF, Botsch and Kobbelt 05]

- Represent deformation by RBFs

$$
\mathbf{d}(\mathbf{x})=\sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\left\|\mathbf{c}_{j}-\mathbf{x}\right\|\right)+\mathbf{p}(\mathbf{x})
$$

- Triharmonic basis function $\varphi(r)=r^{3}$
- C^{2} boundary constraints
- Highly smooth / fair interpolation

$$
\int_{\mathfrak{R}^{3}}\left\|\mathbf{d}_{x x x}\right\|^{2}+\left\|\mathbf{d}_{x y y}\right\|^{2}+\ldots+\left\|\mathbf{d}_{z z z}\right\|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \rightarrow \min
$$

RBF Fitting

[RBF, Botsch and Kobbelt 05]

- Represent deformation by RBFs

$$
\mathbf{d}(\mathbf{x})=\sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\left\|\mathbf{c}_{j}-\mathbf{x}\right\|\right)+\mathbf{p}(\mathbf{x})
$$

- RBF fitting
- Interpolate displacement constraints
- Solve linear system for \mathbf{w}_{j} and \mathbf{p}

RBF Fitting

[RBF, Botsch and Kobbelt 05]

- Represent deformation by RBFs

$$
\mathbf{d}(\mathbf{x})=\sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\left\|\mathbf{c}_{j}-\mathbf{x}\right\|\right)+\mathbf{p}(\mathbf{x})
$$

- RBF evaluation
- Function d transforms points
- Jacobian Vd transforms normals
- Precompute basis functions
- Evaluate on the GPU!

Local \& Global Deformations

 [RBF, Botsch and Kobbelt 05]

Local \& Global Deformations

 [RBF, Botsch and Kobbelt 05]

Space Deformations
 Summary so far

- Handle arbitrary input
- Meshes (also non-manifold)
- Point sets
- Polygonal soups
- ...
- Complexity mainly depends on the control object, not the surface

Space Deformations

Summary so far

- Handle arbitrary input
- Meshes (also non-manifold)
- Point sets
- Polygonal soups

- Easier to analyze: functions then the Jacobian is the determinant on Euclidean domain
- Volume preservation: |Jacobian| = 1

$$
J a c(F)=\left\{\begin{array}{lll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \\
\frac{\partial H}{\partial x} & \frac{\partial H}{\partial y} & \frac{\partial H}{\partial z}
\end{array}\right\}
$$

Space Deformations
 Summary so far

- The deformation is only loosely aware of the shape that is being edited
- Small Euclidean distance \rightarrow similar deformation
- Local surface detail may be distorted

Cage-based Deformations

[Ju et al. 2005]

- Cage = crude version of the input shape
- Polytope (not a lattice)

Cage-based Deformations
 [Ju et al. 2005]

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point \mathbf{x} in space is represented w.r.t. to the cage elements using coordinate functions

$$
\mathbf{x}=\sum_{i=1}^{k} w_{i}(\mathbf{x}) \mathbf{p}_{i}
$$

Cage-based Deformations
 [Ju et al. 2005]

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point \mathbf{x} in space is represented w.r.t. to the cage elements using coordinate functions

$$
\mathbf{x}=\sum_{i=1}^{k} w_{i}(\mathbf{x}) \mathbf{p}_{i}
$$

Cage-based Deformations

[Ju et al. 2005]

- Cage = crude version of the input shape
- Polytope (not a lattice)

Cage-based Deformations

[Ju et al. 2005]

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$
\mathbf{x}^{\prime}=\sum_{i=1}^{k} w_{i}(\mathbf{x}) \mathbf{p}_{i}^{\prime}
$$

Cage-based Deformations

[Ju et al. 2005]

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$
\mathbf{x}^{\prime}=\sum_{i=1}^{k} w_{i}(\mathbf{x}) \mathbf{p}_{i}^{\prime}
$$

Coordinate Functions

- Mean-value coordinates (Floater, Ju et al. 2005)
- Generalization of barycentric coordinates
- Closed-form solution for $w_{i}(\mathbf{x})$

Coordinate Functions

- Mean-value coordinates (Floater, Ju et al. 2005)
- Not necessarily positive on non-convex domains

Coordinate Functions

- PMVC (Lipman et al. 2007) - ensures positivity, but no longer closed-form and only C^{0}

Coordinate Functions

- Harmonic coordinates (Joshi et al. 2007)
- Harmonic functions $h_{i}(\mathbf{x})$ for each cage vertex \mathbf{p}_{i}
- Solve

$$
\Delta h=0
$$

subject to: h_{i} linear on the boundary s.t. $h_{i}\left(\mathbf{p}_{i}\right)=\delta_{i j}$

Coordinate Functions

- Harmonic coordinates (Joshi et al. 2007)
- Harmonic functions $h_{i}(\mathbf{x})$ for each cage vertex \mathbf{p}_{i}
- Solve

$$
\Delta h=0
$$

subject to: h_{i} linear on the boundary s.t. $h_{i}\left(\mathbf{p}_{i}\right)=\delta_{i j}$

- Volumetric Laplace equation
- Discretization, no closed-form

Coordinate Functions

- Harmonic coordinates (Joshi et al. 2007)

4/5/2M11C

HC

Coordinate Functions

- Green coordinates (Lipman et al. 2008)
- Observation: previous vertex-based basis functions always lead to affine-invariance!

Coordinate Functions

- Green coordinates (Lipman et al. 2008)
- Correction: Make the coordinates depend on the cage faces as well

Coordinate Functions

- Green coordinates (Lipman et al. 2008)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Coordinate Functions

- Green coordinates (Lipman et al. 2008)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions and extension to point handles : Weber et al. Eurographics 2009

Nonlinear Space Deformations

- Involve nonlinear optimization
- Enjoy the advantages of space warps
- Additionally, have shape-preserving properties

As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Points or segments as control objects
- First developed in 2D and later extended to 3D by Zhu and Gortler (2007)

As-Rigid-As-Possible Deformation

 Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]- Attach an affine transformation to each point $\mathbf{x} \in \mathrm{R}^{3}$:

$$
\mathrm{A}_{\mathbf{x}}(\mathbf{p})=\mathrm{M}_{\mathbf{x}} \mathbf{p}+\mathbf{t}_{\mathbf{x}}
$$

- The space warp:

$$
\mathbf{x} \rightarrow \mathrm{A}_{\mathbf{x}}(\mathbf{x})
$$

As-Rigid-As-Possible Deformation

 Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]- Handles \mathbf{p}_{i} are displaced to \mathbf{q}_{i}
- The local transformation at \mathbf{x} :

$$
\begin{gathered}
\mathrm{A}_{\mathbf{x}}(\mathbf{p})=\mathrm{M}_{\mathbf{x}} \mathbf{p}+\mathbf{t}_{\mathbf{x}} \quad \text { s.t. } \\
\sum_{i=1}^{k} w_{i}(\mathbf{x})\left\|\mathrm{A}_{\mathbf{x}}\left(\mathbf{p}_{i}\right)-\mathbf{q}_{i}\right\|^{2} \rightarrow \min
\end{gathered}
$$

- The weights depend on \mathbf{x} :

$$
w_{i}(\mathbf{x})=\left\|\mathbf{p}_{i}-\mathbf{x}\right\|^{-2 \alpha}
$$

As-Rigid-As-Possible Deformation

 Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]- No additional restriction on $\mathrm{A}_{\mathbf{x}}(\cdot)$ - affine local transformations

As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Restrict $\mathrm{A}_{\mathbf{x}}(\cdot)$ to similarity

As-Rigid-As-Possible Deformation

 Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]- Restrict $\mathrm{A}_{\mathbf{x}}(\cdot)$ to similarity

As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Restrict $\mathrm{A}_{\mathbf{x}}(\cdot)$ to rigid

As-Rigid-As-Possible Deformation

 Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]- Restrict $\mathrm{A}_{\mathbf{x}}(\cdot)$ to rigid

As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Examples

As-Rigid-As-Possible Deformation

MLS approach - extension to 3D [Zhu \& Gortler 2007]

- No linear expression for similarity in 3D
- Instead, can solve for the minimizing rotation

$$
\underset{\mathrm{R} \in \mathrm{SO}(3)}{\arg \min } \sum_{i=1}^{k} w_{i}(\mathbf{x})\left\|\mathrm{R} \mathbf{p}_{i}-\mathbf{q}_{i}\right\|^{2}
$$

by polar decomposition of the 3×3 covariance matrix

As-Rigid-As-Possible Deformation

 MLS approach - extension to 3D [Zhu \& Gortler 2007]- Zhu and Gortler also replace the Euclidean distance in the weights by "distance within the shape"

$$
w_{i}(\mathbf{x})=d\left(\mathbf{p}_{i}, \mathbf{x}\right)^{-2 \alpha}
$$

As-Rigid-As-Possible Deformation

MLS approach - extension to 3D [Zhu \& Gortler 2007]

- More results

As-Rigid-As-Possible Deformation

 Deformation Graph approach [Sumner et al. 2007]- Surface handles as interface
- Underlying graph to represent the deformation; nodes store rigid transformations
- Decoupling of handles from def. representation

Deformation Graph

Optimization Procedure

Deformation Graph

[Sumner et al. 2007]

Deformation Graph

[Sumner et al. 2007]

Deformation Graph

[Sumner et al. 2007]

Begin with an embedded object.
Nodes selected via uniform sampling; located at \mathbf{G}_{j} One rigid transformation for each node: $\mathrm{R}_{j}, \mathbf{t}_{j}$

Each node deforms nearby space.
Edges connect nodes of overlapping influence.

Deformation Graph

[Sumner et al. 2007]

Begin with an embedded object.
Nodes selected via uniform sampling; located at \mathbf{G}_{j}
One rigid transformation for each node: $\mathrm{R}_{j}, \mathbf{t}_{j}$
Each node deforms nearby space.
Edges connect nodes of overlapping influence.

Deformation Graph

[Sumner et al. 2007]

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\sum_{j=1}^{m} \frac{w_{j}(\mathbf{x})}{\text { bending weights }}\left[\frac{\text { point } \mathbf{x} \text { transformed by node } j}{\mathrm{R}_{j}\left(\mathbf{x}-\mathbf{g}_{j}\right)+\mathbf{g}_{j}+\mathbf{t}_{j}}\right] \\
& w_{j}(\mathbf{x})=\left(1-\left\|\mathbf{x}-\mathbf{g}_{j}\right\| / d_{\text {max }}\right)^{2}
\end{aligned}
$$

Optimization

[Sumner et al. 2007]

Select \& drag vertices of embedded object.

Optimization

[Sumner et al. 2007]

Select \& drag vertices of embedded object.

Optimization finds
deformation parameters $\mathrm{R}_{j}, \mathbf{t}_{j}$.

Select \& drag vertices of embedded
object.

Optimization finds
deformation parameters $\mathrm{R}_{j}, \mathbf{t}_{j}$.

$$
\min _{\mathbf{R}_{1}, \mathbf{t}_{1}, \ldots, \mathbf{R}_{m}, \mathbf{t}_{m}} w_{\mathrm{rot}} \mathrm{E}_{\mathrm{rot}}+w_{\mathrm{reg}} \mathrm{E}_{\mathrm{reg}}+w_{\mathrm{con}} \mathrm{E}_{\mathrm{con}}
$$

$\operatorname{Rot}(\mathbf{R})=\left(\mathbf{c}_{1} \cdot \mathbf{c}_{2}\right)^{2}+\left(\mathbf{c}_{1} \cdot \mathbf{c}_{3}\right)^{2}+\left(\mathbf{c}_{2} \cdot \mathbf{c}_{3}\right)^{2}+$
$\left(\mathbf{c}_{1} \cdot \mathbf{c}_{1}-1\right)^{2}+\left(\mathbf{c}_{2} \cdot \mathbf{c}_{2}-1\right)^{2}+\left(\mathbf{c}_{3} \cdot \mathbf{c}_{3}-1\right)^{2}$

$$
\mathrm{E}_{\mathrm{rot}}=\sum_{j=1}^{m} \operatorname{Rot}\left(\mathbf{R}_{j}\right)
$$

For detail preservation, features should rotate and not scale or skew.

$$
\min _{\mathbf{R}_{1}, \mathbf{t}_{1}, \ldots, \mathbf{R}_{m}, \mathbf{t}_{m}} w_{\mathrm{rot}} \mathrm{E}_{\mathrm{rot}}+w_{\mathrm{reg}} \mathrm{E}_{\mathrm{reg}}+w_{\mathrm{con}} \mathrm{E}_{\mathrm{con}}
$$

$$
\mathrm{E}_{\mathrm{reg}}=\sum_{j=1}^{m} \sum_{k \in \mathrm{~N}(j)} \alpha_{j k}\|\mathbf{R}_{j} \underbrace{\left(\mathbf{g}_{k}-\mathbf{g}_{j}\right)+\mathbf{g}_{j}+\mathbf{t}_{j}}_{\text {where node } j \text { thinks }}-\underset{\text { where node } k}{\left(\mathbf{g}_{k}+\mathbf{t}_{k}\right)}\|_{2}^{2}
$$

$$
\text { node } k \text { should go }
$$

Neighboring nodes should agree on where they transform each other.

$$
\min _{\mathbf{R}_{1}, \mathbf{t}_{1}, \ldots, \mathbf{R}_{m}, \mathbf{t}_{m}} w_{\mathrm{rot}} \mathrm{E}_{\mathrm{rot}}+w_{\mathrm{reg}} \mathrm{E}_{\mathrm{reg}}+w_{\mathrm{con}} \mathrm{E}_{\mathrm{con}}
$$

Handle vertices should go where the user puts them.

Results: Polygon Soup

[Sumner et al. 2007]

Results: Giant Mesh

[Sumner et al. 2007]

Results: Detail Preservation

[Sumner et al. 2007]

Discussion

- Decoupling of deformation complexity and model complexity
- Nonlinear energy optimization - results comparable to surface-based approaches

