CS 523: Computer Graphics, Spring 2011 Interactive Shape Modeling

Space deformations

Space Deformation

- Displacement function defined on the ambient space $\mathbf{d}: \mathbb{R}^3 \rightarrow \mathbb{R}^3$
- Evaluate the function on the points of the shape embedded in the space

$$\mathbf{x}' = \mathbf{x} + \mathbf{d}(\mathbf{x})$$

Twist warp Global and local deformation of solids [A. Barr, SIGGRAPH 84]

Freeform Deformations

- Control object
- User defines displacements d_i for each element of the control object
- Displacements are interpolated to the entire space using basis functions $B_i(\mathbf{x}) : \mathbb{R}^3 \to \mathbb{R}$

$$\mathbf{d}(\mathbf{x}) = \sum_{i=1}^{k} \mathbf{d}_{i} B_{i}(\mathbf{x})$$

 Basis functions should be smooth for aesthetic results

Trivariate Tensor Product Bases

[Sederberg and Parry 86]

- Control object = lattice
- Basis functions B_i(x) are trivariate tensor-product splines:

$$\mathbf{d}(x, y, z) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(x) N_j(y) N_i(z)$$

Trivariate Tensor Product Bases

- Similar to the surface case
 - Aliasing artifacts
- Interpolate deformation constraints?
 - Only in least squares sense

Lattice as Control Object

- Difficult to manipulate
- The control object is not related to the shape of the edited object
- Part of the shape in close Euclidean distance always deform similarly, even if geodesically far

Wires

[Singh and Fiume 98]

- Control objects are arbitrary space curves
- Can place curves along meaningful features of the edited object
- Smooth deformations around the curve with decreasing influence

Handle Metaphor

[RBF, Botsch and Kobbelt 05]

- Wish list for the displacement function $\mathbf{d}(\mathbf{x})$:
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation

Volumetric Energy Minimization [RBF, Botsch and Kobbelt 05]

Minimize similar energies to surface case

$$\int_{\Re^3} \left\| \mathbf{d}_{xx} \right\|^2 + \left\| \mathbf{d}_{xy} \right\|^2 + \ldots + \left\| \mathbf{d}_{zz} \right\|^2 dx dy dz \rightarrow \min$$

- But displacements function lives in 3D...
 - Need a volumetric space tessellation?
 - No, same functionality provided by RBFs!

Radial Basis Functions

[RBF, Botsch and Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \boldsymbol{\varphi}(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- Triharmonic basis function $\varphi(r) = r^3$
 - C² boundary constraints
 - Highly smooth / fair interpolation

$$\int_{\mathfrak{R}^3} \left\| \mathbf{d}_{xxx} \right\|^2 + \left\| \mathbf{d}_{xyy} \right\|^2 + \ldots + \left\| \mathbf{d}_{zzz} \right\|^2 dx dy dz \rightarrow \min$$

RBF Fitting

[RBF, Botsch and Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \boldsymbol{\varphi}(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF fitting
 - Interpolate displacement constraints
 - Solve linear system for w_i and p

RBF Fitting

[RBF, Botsch and Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \cdot \boldsymbol{\varphi}(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF evaluation
 - Function d transforms points
 - Jacobian ∇d transforms normals
 - Precompute basis functions
 - Evaluate on the GPU!

Local & Global Deformations

[RBF, Botsch and Kobbelt 05]

Local & Global Deformations

[RBF, Botsch and Kobbelt 05]

1M vertices movie

Space Deformations

Summary so far

- Handle arbitrary input
 - Meshes (also non-manifold)
 - Point sets
 - Polygonal soups
 - ...

- 3M triangles
- 10k components
- Not oriented
- Not manifold

 Complexity mainly depends on the control object, not the surface

Space Deformations

Summary so far

- Handle arbitrary input
 - Meshes (also non-manifold)
 - Point sets
 - Polygonal soups
 - •

 $\mathbf{F}(x,y,z) = (F(x,y,z), G(x,y,z), H(x,y,z))$

then the Jacobian is the determinant

 $J_{ac}(\mathbf{F}) = \begin{vmatrix} \frac{\partial F}{\partial z} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial z} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \\ \frac{\partial H}{\partial z} & \frac{\partial H}{\partial y} & \frac{\partial H}{\partial z} \end{vmatrix}$

- Easier to analyze: functions on Euclidean domain
 - Volume preservation: |Jacobian| = 1

Space Deformations

Summary so far

- The deformation is only loosely aware of the shape that is being edited
- Small Euclidean distance \rightarrow similar deformation
- Local surface detail may be distorted

- Cage = crude version of the input shape
- Polytope (not a lattice)

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}_i$$

4/5/2011

- Cage = crude version of the input shape
- Polytope (not a lattice)
- Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}_i$$

Andrew Nealen, Rutgers, 2011

4/5/2011

- Cage = crude version of the input shape
- Polytope (not a lattice)

Andrew Nealen, Rutgers, 2011

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$\mathbf{x'} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}'_i$$

Andrew Nealen, Rutgers, 2011

- Cage = crude version of the input shape
- Polytope (not a lattice)

$$\mathbf{x'} = \sum_{i=1}^k w_i(\mathbf{x}) \mathbf{p}'_i$$

- Mean-value coordinates (Floater, Ju et al. 2005)
 - Generalization of barycentric coordinates
 - Closed-form solution for $w_i(\mathbf{x})$

- Mean-value coordinates (Floater, Ju et al. 2005)
 - Not necessarily positive on non-convex domains

 PMVC (Lipman et al. 2007) – ensures positivity, but no longer closed-form and only C⁰

- Harmonic coordinates (Joshi et al. 2007)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i
 - Solve

$$\Delta h = 0$$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_i) = \delta_{ii}$

- Harmonic coordinates (Joshi et al. 2007)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i
 - Solve

$$\Delta h = 0$$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_i) = \delta_{ij}$

- Volumetric Laplace equation
- Discretization, no closed-form

Harmonic coordinates (Joshi et al. 2007)

Andrew Nealen, Rutgers, 2011

HC

- Green coordinates (Lipman et al. 2008)
- Observation: previous vertex-based basis functions always lead to affine-invariance!

- Green coordinates (Lipman et al. 2008)
- Correction: Make the coordinates depend on the cage faces as well

- Green coordinates (Lipman et al. 2008)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

- Green coordinates (Lipman et al. 2008)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions and extension to point handles : Weber et al. Eurographics 2009

Nonlinear Space Deformations

- Involve nonlinear optimization
- Enjoy the advantages of space warps
- Additionally, have shape-preserving properties

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Points or segments as control objects
- First developed in 2D and later extended to 3D by Zhu and Gortler (2007)

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Attach an affine transformation to each point $\mathbf{x} \in \mathbb{R}^3$:

$$A_{\mathbf{x}}(\mathbf{p}) = M_{\mathbf{x}}\mathbf{p} + \mathbf{t}_{\mathbf{x}}$$

The space warp:

$$\mathbf{x} \rightarrow \mathbf{A}_{\mathbf{x}}(\mathbf{x})$$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Handles \mathbf{p}_i are displaced to \mathbf{q}_i
- The local transformation at x:

$$A_x(\mathbf{p}) = M_x\mathbf{p} + \mathbf{t}_x$$
 s.t.

$$\sum_{i=1}^{k} w_i(\mathbf{x}) \| \mathbf{A}_{\mathbf{x}}(\mathbf{p}_i) - \mathbf{q}_i \|^2 \rightarrow \min$$

• The weights depend on **x**: $w_i(\mathbf{x}) = \|\mathbf{p}_i - \mathbf{x}\|^{-2\alpha}$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

No additional restriction on A_x(·) – affine local transformations

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

$$M_{\mathbf{x}} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Solve for $M_{\mathbf{x}}$ like
similarity and then
normalize

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Examples

MLS approach – extension to 3D [Zhu & Gortler 2007]

- No linear expression for similarity in 3D
- Instead, can solve for the minimizing rotation

$$\underset{\mathbf{R}\in\mathrm{SO(3)}}{\operatorname{arg\,min}}\sum_{i=1}^{k}w_{i}(\mathbf{x})\|\mathbf{R}\mathbf{p}_{i}-\mathbf{q}_{i}\|^{2}$$

by polar decomposition of the 3×3 covariance matrix

MLS approach – extension to 3D [Zhu & Gortler 2007]

Zhu and Gortler also replace the Euclidean distance in the weights by "distance within the shape"

MLS approach – extension to 3D [Zhu & Gortler 2007]

More results

Deformation Graph approach [Sumner et al. 2007]

- Surface handles as interface
- Underlying graph to represent the deformation; nodes store rigid transformations
- Decoupling of handles from def. representation

4/5/2011

Optimization Procedure

[Sumner et al. 2007]

Andrew Nealen, Rute

[Sumner et al. 2007]

Begin with an embedded object.

[Sumner et al. 2007]

Begin with an embedded object.

Nodes selected via uniform sampling; located at $\; {\bf g}_{j} \;$ One rigid transformation for each node: R_{j} , $\; {\bf t}_{j} \;$

Each node deforms nearby space.

Edges connect nodes of overlapping influence.

Andrew Nealen, Rute

[Sumner et al. 2007]

Begin with an embedded object.

Nodes selected via uniform sampling; located at $~{\bf g}_j$ One rigid transformation for each node: R_j , $~{\bf t}_j$

Each node deforms nearby space.

Edges connect nodes of overlapping influence.

Andrew Nealen, Ru

[Sumner et al. 2007]

Influence of nearby transformations is blended.

$$\mathbf{x}' = \sum_{j=1}^{m} w_j(\mathbf{x}) \begin{bmatrix} \mathbf{R}_j(\mathbf{x} - \mathbf{g}_j) + \mathbf{g}_j + \mathbf{t}_j \\ \text{blending weights} \end{bmatrix}$$
$$w_j(\mathbf{x}) = (1 - \|\mathbf{x} - \mathbf{g}_j\| / d_{\max})^2$$

4/5/2011

Andrew Nealen, Rute

Optimization

[Sumner et al. 2007]

Select & drag vertices of embedded object.

Optimization

[Sumner et al. 2007]

Select & drag vertices of embedded object.

Optimization finds deformation parameters $R_{j}\mbox{, }t_{j}.$

 $W_{\rm rot}E_{\rm rot} + W_{\rm reg}E_{\rm reg} + W_{\rm con}E_{\rm con}$ $\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m}$ Graph Rotation Regularization Constraint parameters term term term Select & drag vertices of embedded object. **Optimization finds** deformation parameters \mathbf{R}_{i} , \mathbf{t}_{i} .

Andrew Nealen, Rutgers, 2011

4/5/2011

 $\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\mathrm{rot}} E_{\mathrm{rot}} + w_{\mathrm{reg}} E_{\mathrm{reg}} + w_{\mathrm{con}} E_{\mathrm{con}}$ $\mathbf{E}_{\text{reg}} = \sum \sum \alpha_{jk} \left\| \mathbf{R}_{j} (\mathbf{g}_{k} - \mathbf{g}_{j}) + \mathbf{g}_{j} + \mathbf{t}_{j} - (\mathbf{g}_{k} + \mathbf{t}_{k}) \right\|_{2}^{2}$ $i=1 k \in N(i)$ where node *j* thinks where node k node k should go actually goes Neighboring nodes should agree on where they transform each other. Andrew Nealen, Rutgers, 2011 4/5/2011

 $W_{\rm rot}E_{\rm rot} + W_{\rm reg}E_{\rm reg} + W_{\rm con}E_{\rm con}$ $\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m}$

4/5/2011

Andrew

Handle vertices should go where the user puts them.

Results: Polygon Soup

[Sumner et al. 2007]

Results: Giant Mesh

[Sumner et al. 2007]

Results: Detail Preservation

[Sumner et al. 2007]

Demo

Discussion

- Decoupling of deformation complexity and model complexity
- Nonlinear energy optimization results comparable to surface-based approaches

4/5/2011