CS 523: Computer Graphics, Spring 2011 Shape Modeling

Skeletal deformation

Believable character animation

- Computers games and movies
- Skeleton: intuitive, low-dimensional subspace

Clip courtesy of Ilya Baran

Discrete representation

- Skeleton:
 - collection of line segments
 - connected by joints

- Skin:
 - discrete samples of the surface
 - polygonal mesh

 Skeleton defines the overall motion

Skin + skeleton

Skin moves with the skeleton

The process of building the skeleton and binding it to the skin mesh is called **rigging**.

Andrew Nealen, Rutgers, 2011

Skeletal subspace deformation (SSD)

The artist needs to specify, for each point on the skin, how much it is influenced by the skeleton bones.

Skeletal subspace deformation (SSD)

Affine combination of transformations

$$\mathbf{v}'_{j} = \sum_{k=1}^{K} w_{kj} \cdot \mathbf{T}_{k} \cdot \mathbf{v}_{j}$$

De facto standard for interactive applications – simple + fast + works on the GPU

Skeletal subspace deformation (SSD)

- Hard to set up
- Visual artifacts
- No context

Pose space deformation (PSD)

[Lewis et al. 2000, Sloan et al. 2001]

Each degree of freedom of the skeleton is a dimension:

 $\mathbf{P} = (\alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2, \dots, \alpha_K, \beta_K, \gamma_K)$

Pose space deformation (PSD)

Pose space deformation (PSD)

PSD limitations

 SSD – artifacts, requires many examples + setup

Linear displacements
 – no rotation

 High memory consumption, performance

Rotation interpolation and extrapolation

Linear displacements (PSD)

Context-Aware Skeletal Shape Deformation

Eurographics 2007

Ofir Weber Olga Sorkine Yaron Lipman Craig Gotsman

The contributions

 Replace SSD by detail-preserving mesh deformation

[Sorkine et al. 2004, Sumner et al. 2004, Yu et al. 2004, Lipman et al. 2005, Zayer et al. 2005]

- Easy setup
- Differential morphing
- Sparse representation of example shapes

Other previous work

- Pose Space Deformation [Lewis et al. 2000, Sloan et al. 2001, Kry et al. 2002, Kurihara et al. 2004, Rhee et al. 2006]
- Detail-preserving mesh deformation [Sorkine et al. 2004, Sumner et al. 2004, Yu et al. 2004, Lipman et al. 2005, Zayer et al. 2005...]
 Survey: [Botsch and Sorkine 2008]
- MeshIK [Sumner et al. 2005, Der et al. 2006]
- SCAPE [Anguelov et al. 2005]

Detail-preserving deformation

$$\Delta \mathbf{W}_k = \mathbf{0}$$

Dirichlet boundary conditions: $\mathbf{w}_k(t_n) = 1$ for $t_n \in H_k$ $\mathbf{w}_k(t_n) = 0$ for $t_n \in H_l$ where $l \neq k$.

Andrew Nealen, Rutgers, 2011

Blending rotations

For each face t:

 $\mathbf{R}(t) = \mathbf{w}_1(t)\mathbf{R}_1 \oplus \mathbf{w}_2(t)\mathbf{R}_2 \oplus \ldots \oplus \mathbf{w}_K(t)\mathbf{R}_K$

⊕: [Buss 93]

log-quaternion

Poisson equation [Yu et al. 2004]

R,

 $\Delta[x y z] = \operatorname{div}[\mathbf{R}]$

Sparse linear system

Poisson stitching

- The Poisson equation averages the different vertex positions
- Tries to preserve the shape and orientation of the triangles as much as possible

Poisson stitching

- The Poisson equation averages the different vertex positions
- Tries to preserve the shape and orientation of the triangles as much as possible

Setup

Comparison to SSD

Comparison to SSD

SSD

CASSD

Using context – examples

Relative encoding

Blending transformations

Smooth Difference

Compact Representation

- Transformations varies smoothly
- Laplace equation
- Less than 5% memory
- Evaluation only at anchors performance
- Greedy selection

$\Delta T = 0$ Boundary conditions: known T's at anchors

See Least-squares Meshes [Sorkine and Cohen-Or 2004]

One more result...

Conclusions

- Detail-preserving skeletal shape deformation
- Easy setup
- No or small number of examples
- Interpolation and meaningful extrapolation
- Sparse representation of examples

Limitations and extensions

- No dynamics
- The greedy algorithm is not optimal
- Map to GPU \rightarrow Wang et al. SIGGRAPH 2007