
CS 523: Computer Graphics, Spring 2011

Shape Modeling

Shape Representations

1/18/2011Andrew Nealen, Rutgers, 2011 1

Course topics

� Shape representation

� Points

� Parametric surfaces

� Implicits� Implicits

1/18/2011Andrew Nealen, Rutgers, 2011 2

Course topics

� Shape representation

� Subdivision surfaces

� Polygonal meshes

1/18/2011Andrew Nealen, Rutgers, 2011 3

Shape representation

� Where does the shape

come from?

� Modeling “by hand”:

� Higher-level representations,

amendable to modification, amendable to modification,

control

� Parametric surfaces,

subdivision surfaces, implicits

� Acquired real-world objects:

� Discrete sampling

� Points, meshes

Andrew Nealen, Rutgers, 2011 1/18/2011 4

Points

Andrew Nealen, Rutgers, 2011 1/18/2011 5

Shape acquisition
Sampling of real world objects

Andrew Nealen, Rutgers, 2011 1/18/2011 6

Points

� Standard 3D data from a variety of sources

� Often results from scanners

� Potentially noisy

� Depth imaging (e.g. by

triangulation

� Registration of multiple images

Andrew Nealen, Rutgers, 2011 1/18/2011 7

Points

� points = unordered set of 3-tuples

� Often converted to other reps

� Meshes, implicits, parametric surfaces

� Easier to process, edit and/or render� Easier to process, edit and/or render

� Efficient point processing and modeling

requires a spatial partitioning data structure

� To figure out neighborhoods

Andrew Nealen, Rutgers, 2011 1/18/2011 8

Points
Neighborhood information

� Why do we need neighbors?

Andrew Nealen, Rutgers, 2011 1/18/2011

� Need sub-linear implementations of

� k-nearest neighbors to point x

� In radius search ε<− xpi

need normals (for shading) upsampling – need to count density

9

Spatial Data Structures
Commonly used for point processing

� Regular uniform 3D lattice

� Simple point insertion by

coordinate discretization

� Simple proximity queries by � Simple proximity queries by

searching neighboring cells

� Determining lattice parameters

(i.e. cell dimensions) is nontrivial

� Generally unbalanced, i.e. many empty cells

Andrew Nealen, Rutgers, 2011 1/18/2011 10

Spatial Data Structures
Commonly used for point processing

� Octree

� Splits each cell into 8 equal cells

� Adaptive, i.e. only splits when

too many points in cell

� Proximity search by (recursive)� Proximity search by (recursive)

tree traversal and distance to

neighboring cells

� Tree might not be balanced

Andrew Nealen, Rutgers, 2011 1/18/2011 11

Spatial Data Structures
Commonly used for point processing

� Kd-Tree

� Each cell is individually

split along the median

into two cells

� Same amount of points � Same amount of points

in cells

� Perfectly balanced tree

� Proximity search similar to the recursive

search in an Octree

� More data storage required for

inhomogeneous cell dimensions

Andrew Nealen, Rutgers, 2011 1/18/2011 12

Parametric Curves and Surfaces

Andrew Nealen, Rutgers, 2011 1/18/2011 13

Parametric Curves and Surfaces

� Curves are 1-dimensional parameterizations

ttS x=)(

� Surfaces are 2-dimensional parameterizations

Andrew Nealen, Rutgers, 2011 1/18/2011

tyxS x=),(

14

Parametric Curves and Surfaces
Examples

� Explicit curve/circle in 2D

p :R→ Rd ,d =1,2,3,K

ta p(t) = x(t),y(t),z(t)()

Andrew Nealen, Rutgers, 2011 1/18/2011

ta p(t) = x(t),y(t),z(t)()

p(t) = r ⋅ cos(t),sin(t),0()
t ∈ [0,2π]

15

Parametric Curves and Surfaces
Examples

� Explicit surface/sphere in 3D

q :R2 → Rd ,d =1,2,3,K

(u,v) a q(u,v) = x(u,v),y(u,v),z(u,v)()

Andrew Nealen, Rutgers, 2011 1/18/2011

(u,v) a q(u,v) = x(u,v),y(u,v),z(u,v)()

p(u,v) = r ⋅ cos(u)cos(v),sin(u)cos(v),sin(v)()
(u,v) ∈ [0,2π]× [−π /2,π/2]

16

Parametric Curves
Continuity and regularity

� Curve segment

� The same segment can be

parameterized differently

 p : [a,b] → Rd ,d =1,2,3,K

1P

2P

p1 : [0,1] → R3,p(t) = tP1 + (1− t)P2

� A parametric curve is n-times continuously differentiable if

the image p is n-times continuously differentiable (C
n
)

� The derivative p’(t) at position t is a tangent vector

� A curve is regular when p is differentiable and p’(t) ≠ 0

Andrew Nealen, Rutgers, 2011 1/18/2011

p1 : [0,1] → R ,p(t) = tP1 + (1− t)P2

p2 : [0,1] → R3,p(t) = t 2P1 + (1− t 2)P2

17

Parametric Curves
Continuity and regularity

� Example

� p is continuously differentiable,

p : [−2,2] → R3,p(t) = (t 3,t 2,0)

′ p (t) = (3t 2,2t,0) ⇒ p'(0) = 0

� p is continuously differentiable,

but not regular at position t = 0

� The regularity of a curve can be expressed as its

visual smoothness

� The tangent vector can be interpreted as the

velocity (compare to physics v = s’)

Andrew Nealen, Rutgers, 2011 1/18/2011 18

Parametric Curves
Arc length parameterization

� A curve is parameterized by arc length when

� Any regular curve can be parameterized by

arc length

],[,1)(batt ∈=′p

arc length

� For arc length parameterized curves:

Andrew Nealen, Rutgers, 2011 1/18/2011

T(s) := ′ p (s)

K(s) := ′ ′ p (s)

κ(s) := ′ ′ p (s)

Tangent vector

Curvature vector

Curvature (scalar)

19

Parametric Surfaces
Tensor product surfaces

� Example: Bezier surfaces

� Surface lies in convex hull

of control points

� Surface interpolates the � Surface interpolates the

four corner control points

� Boundary curves are

Bezier curves defined only

by control points on the boundary

� Other: B-Spline patches, NURBS, etc…

Andrew Nealen, Rutgers, 2011 1/18/2011 20

Parametric Curves and Surfaces

� Advantages

� Easy to generate points on the curve/surface

� Separates x/y/z components

� Disadvantages

� Hard to determine inside/outside

� Hard to determine if a point is on the

curve/surface

Andrew Nealen, Rutgers, 2011 1/18/2011 21

Implicit Curves and Surfaces

Andrew Nealen, Rutgers, 2011 1/18/2011 22

Implicit Curves and Surfaces
Illustration

Andrew Nealen, Rutgers, 2011 1/18/2011 23

Implicit Curves and Surfaces
Examples

� Implicit circle and sphere

f :R2 → R

{ }
g :R3 → R

{ }

Andrew Nealen, Rutgers, 2011 1/18/2011

K = p∈ R2 : f (p) = 0{ }

f (x,y) = x 2 + y 2 − r2

K = p∈ R3 : g(p) = 0{ }

g(x,y,z) = x 2 + y 2 + z2 − r2

24

Implicit Curves and Surfaces
Definition

� Definition

� Space partitioning

g : R3 → R

K = g−1 0()= p∈ R3 : g(p) = 0{ }

� Space partitioning

Andrew Nealen, Rutgers, 2011 1/18/2011

{p∈ R3 : g(p) < 0}

{p∈ R3 : g(p) = 0}

{p∈ R3 : g(p) > 0}

Inside

Curve/Surface

Outside

25

Implicit Curves and Surfaces
Gradient

� The normal vector to the surface is given by

the gradient of the (scalar) implicit function

∇g x,y,z()=
∂g
∂x

,
∂g
∂y

,
∂g
∂z











T

� Example

Andrew Nealen, Rutgers, 2011 1/18/2011

∇g x,y,z()=
∂x

,
∂y

,
∂z





g x,y,z()= x 2 + y 2 + z2 − r2

∇g x,y,z()= 2x,2y,2z()T

∇g x,y,z()= 2,2,0()T

26

Implicit Curves and Surfaces
Smooth set operations

� Standard operations: union and intersection

gi p()
i

U = mingi p()

gi p()I = maxgi p()

� In many cases, smooth blending is desired

� Pasko and Savchenko [1994]

Andrew Nealen, Rutgers, 2011 1/18/2011

gi p()
i

I = maxgi p()

g∪ f = 1
1+α g+ f − g2 + f 2 − 2αgf()

g∩ f = 1
1+α g+ f + g2 + f 2 − 2αgf()

27

Implicit Curves and Surfaces
Smooth set operations

� Examples

0α = 1α =

� For α = 1, this is equivalent to min and max

Andrew Nealen, Rutgers, 2011 1/18/2011

0α = 1α =

lim
α →1
g∪ f = 1

2
g + f − g − f()2


 


 =
g + f

2
−
g− f

2
= min g, f()

lim
α →1
g∩ f = 1

2
g + f + g − f()2


 


 =
g+ f

2
+
g − f

2
= max g, f()

28

Implicit Curves and Surfaces
Blobs

� Suggested by Blinn [1982]

� Defined implicitly by a potential function around a

point pi:

� Set operations by simple addition/subtraction

gi p()= aie
−bi p−p i

2

� Set operations by simple addition/subtraction

Andrew Nealen, Rutgers, 2011 1/18/2011

0.1ib =

1ib =

5ib =

29

Implicit Curves and Surfaces

� Advantages

� Easy to determine inside/outside

� Easy to determine if a point is on the

curve/surfacecurve/surface

� Disadvantages

� Hard to generate points on the curve/surface

� Does not lend itself to (real-time) rendering

Andrew Nealen, Rutgers, 2011 1/18/2011 30

Polygonal Meshes

Andrew Nealen, Rutgers, 2011 1/18/2011 31

Polygonal Meshes

� Boundary representations of objects

� Surfaces, polyhedrons, triangles, quadrilaterals

� How are these objects stored?

Andrew Nealen, Rutgers, 2011 1/18/2011 32

Definitions
Geometric graph

� A Graph is a pair G=(V,E)

� V is a nonempty set of n distinct vertices

p0, p1, …, pn-1

� E is a set of edges (pi, pk)� E is a set of edges (pi, pk)

� If P is a (discrete) subset of Rd with d ≥ 2, then

G=(V,E) is a geometric graph

� The degree or valence of a vertex describes

the number of edges incident to this vertex

Andrew Nealen, Rutgers, 2011 1/18/2011 33

Definitions
Edges

� Two edges are neighbors if they share a

common vertex

� Edges are generally not oriented, and are

noted as (p , p)noted as (pi, pk)

� Halfedges are edges with added orientation

� An edge is comprised of two halfedges

Andrew Nealen, Rutgers, 2011 1/18/2011

=

34

Definitions
Polygon

� A geometric graph Q=(V,E) with V={p0, p1, …, pn-1}

⊂ Rd with d ≥ 2 and E={(p0, p1),(p1, p2),...,(pn-2, pn-1)}

is a polygon

p0 p1 p4

p5p6

� A polygon is

� Planar, if all vertices lie on a plane

� Closed, if p0 = pn-1

� Simple, if the polygon does not self-intersect

Andrew Nealen, Rutgers, 2011 1/18/2011

p0 p1
p2

p3

p4

35

Definitions
Polygonal mesh

� A finite set M of closed, simple polygons Qi is

a polygonal mesh if:

� The intersection of enclosed regions

of any two polygons in M is emptyof any two polygons in M is empty

� The intersection of two polygons in

M is either empty, a vertex v∈V or

an edge e∈E

� Every edge belongs to at least one polygon

Andrew Nealen, Rutgers, 2011 1/18/2011 36

Definitions
Polygonal mesh

� (Continued) The set of all edges that belong to

only one polygon is termed the

boundary of the polygonal mesh, and

is either empty or forms closed loops

� If the set of edges that belong to

only one polygon is empty, then the polygonal

mesh is closed

� The set of all vertices and edges in a

polygonal mesh form a graph

Andrew Nealen, Rutgers, 2011 1/18/2011 37

Definitions
Polyhedron

� A polygonal mesh is a polyhedron if

� Each edge is part of two polygons (it is closed)

� Every vertex v∈V is part of finite, cyclic ordered

set of polygons {Qi}set of polygons {Qi}

� The polygons incident to a vertex v can be ordered,

such that Qi and Qj share an edge incident to v

� The union of all polygons forms a single connected

component

Andrew Nealen, Rutgers, 2011 1/18/2011 38

Definitions
Manifold

� A polygonal mesh is a 2-manifold if It is

everywhere locally homeomorphic

to a (half) Euclidean 2-ball (a disk)

� A coffee cup is homeomorphic to a torus� A coffee cup is homeomorphic to a torus

� Examples for a non-manifold vertex and a

non-manifold edge

Andrew Nealen, Rutgers, 2011 1/18/2011 39

Definitions
Polyhedron

� The union of all polygonal areas is the surface

of the polyhedron

� The polygonal areas of a polyhedron are also

known as facesknown as faces

� Every polyhedron partitions space into two

areas; inside and outside the polyhedron

Andrew Nealen, Rutgers, 2011 1/18/2011 40

Definitions
Orientation

� Every face of a polygonal mesh is orientable

� by defining “clockwise” (as opposed to

“counterclockwise”). Two possible orientations

� Defines the sign of the 6767� Defines the sign of the

surface normal

� Two neighboring facets

are equally oriented, if the edge directions of

the shared edge (induced by the face

orientations) are opposing

Andrew Nealen, Rutgers, 2011 1/18/2011

0 1

2

54

7

-
0 1

2

54

3

7

+

3

41

Definitions
Orientability

� A polygonal mesh is orientable, if the incident

faces to every edge can be equally oriented

� If the faces are equally oriented for every edge,

the mesh is orientedthe mesh is oriented

� Notes

� Every non-orientable closed mesh

embedded in R3 intersects itself

� The surface of a polyhedron is

always orientable

Andrew Nealen, Rutgers, 2011 1/18/2011 42

� Relation between #vertices, #edges and #faces

of a polygonal mesh

� Example: v = #vertices

Euler-Poincaré Formula

� Example: v = #vertices

e = #edges

f = #faces

v = 8

e = 12

f = 6

v = 8

e = 12+1

f = 6 +1

1/18/2011 43Andrew Nealen, Rutgers, 2011

� Theorem (Euler): The sum
χ(M) = v – e + f

is constant for a given topology, no matter
which mesh we choose

Euler-Poincaré Formula

� If M has one boundary loop:
χ(M) = v – e + f = 1

� If M is homeomorphic to a sphere:
χ(M) = v – e + f = 2

1/18/2011 44Andrew Nealen, Rutgers, 2011

Euler-Poincaré Formula
Usage

� Let‘s count the edges and faces in a closed triangle

mesh:

� Ratio of edges to faces: e = 3/2 f

� each edge belongs to exactly 2 triangles

� each triangle has exactly 3 edges� each triangle has exactly 3 edges

� Ratio of vertices to faces: f ~ 2v

� 2 = v – e + f = v – 3/2 f + f

� 2 – v = – f / 2

� Ratio of edges to vertices: e ~ 3v

� Average degree of a vertex: 6

� 2 vertices incident on each edge

1/18/2011 45Andrew Nealen, Rutgers, 2011

Euler-Poincaré Formula
Genus

� Theorem: if a polyhedron M is homeomorphic
to a sphere with g handles (“holes“) then

χ(M) = v – e + f = 2(1 – g)χ(M) = v – e + f = 2(1 – g)

� g is called the genus of M

This is not a handle,

it’s a boundary loop

handle

1/18/2011 46Andrew Nealen, Rutgers, 2011

Euler-Poincaré Formula
Example: simple torus

v – e + f = 2(1 – g)

8 – 16 + 8 = 2(1 – 1)8 – 16 + 8 = 2(1 – 1)

1/18/2011 47Andrew Nealen, Rutgers, 2011

Euler-Poincaré Formula
Generalization

� Theorem: Let

� v – # vertices

� e – # edges

� f – # faces

� c – # connected components� c – # connected components

� h – # boundary loops

� g – # handles (the genus)

then:
v – e + f – h = 2 (c – g)

1/18/2011 48Andrew Nealen, Rutgers, 2011

4 (0,0,1) 5 (1,0,1)

6 (1,1,1)
7 (0,1,1)

Vertex list
(Coordinate3)

0 0.0 0.0 0.0

1 1.0 0.0 0.0

Face list
(IndexedFaceSet)

0 0 1 2 3

1 0 1 5 4

2 1 2 6 5

Data structures for meshes
Indexed Face Set

0 (0,0,0) 1 (1,0,0)

2 (1,1,0)3 (0,1,0) 2 1.0 1.0 0.0

3 0.0 1.0 0.0

4 0.0 0.0 1.0

5 1.0 0.0 1.0

6 1.0 1.0 1.0

7 0.0 1.0 1.0

2 1 2 6 5

3 2 3 7 6

4 3 0 4 7

5 4 5 6 7

1/18/2011 49Andrew Nealen, Rutgers, 2011

� Coordinates/attributes

� Connectivity

Data structures for meshes
Space requirements

� Connectivity

� When uncompressed, connectivity dominates

� Reminder: f = 2v... so after 256 vertices

1/18/2011 50Andrew Nealen, Rutgers, 2011

� Information about neighbors is not explicit

� Finding neighboring vertices/edges/faces etc. costs O(v)
time!

� Local mesh modifications cost O(v)

Data structures for meshes
Indexed Face Set – Problems

� Breadth-first search costs O(k*v) where k = # found
vertices

1/18/2011 51Andrew Nealen, Rutgers, 2011

Data structures for meshes
Neighborhood relations [Weiler 1985]

� All possible neighborhood relationships:

1. Vertex – Vertex VV

2. Vertex – Edge VE

3. Vertex – Face VF

4. Edge – Vertex EV
VV VFVE

4. Edge – Vertex EV

5. Edge – Edge EE

6. Edge – Face EF

7. Face – Vertex FV

8. Face – Edge FE

9. Face – Face FF

VV VFVE

EV EFEE

FV FFFE

V F

E

1/18/2011 52Andrew Nealen, Rutgers, 2011

Data structures for meshes
Half-edge data structure

f e

0 e0

1 e8

2 e4

3 e16

4 e12

5 e20

v he

0 0.0 0.0 0.0 0

1 1.0 0.0 0.0 1

2 1.0 1.0 0.0 2

3 0.0 1.0 0.0 3

4 0.0 0.0 1.0 4

5 1.0 0.0 1.0 9

6 1.0 1.0 1.0 13

7 0.0 1.0 1.0 16

coord

FaceVertexlist

v2

v4 v5

v6
v7

v3

16

17 18

19

20

21
22

23

0

he vstart next prev opp he vstart next prev opp

0 0 1 3 6 12 2 13 15 10

1 1 2 0 11 13 6 14 12 22

2 2 3 1 15 14 7 15 13 19

3 3 0 2 18 15 3 12 14 2

4 4 5 7 20 16 7 17 19 21

5 5 6 4 8 17 4 18 16 7

6 1 7 5 0 18 0 19 17 3

7 0 4 6 17 19 3 16 18 14

8 1 9 11 5 20 5 21 23 4

9 5 10 8 23 21 4 22 20 16

10 6 11 9 12 22 7 23 21 13

11 2 8 10 1 23 6 20 22 9

Half-Edgelist
V0 V1

v2v3

1

2
7

6

5

3

4
8

9

15

12

13

14

11

10

1/18/2011 53Andrew Nealen, Rutgers, 2011

� Each atomic insertion into the data structure (i.e., vertex,

edge or face insertion) requires constant space and time

Data structures for meshes
Half-edge data structure

2

V F

HE

11

11 Triangle face:

prev = next->next

1/18/2011 54Andrew Nealen, Rutgers, 2011

� All basic queries take constant O(1) time!

� In particular, the query time is independent of the model

size

f1

Data structures for meshes
Half-edge data structure

f1

f2

f3

f0

1/18/2011 55Andrew Nealen, Rutgers, 2011

� Example: efficient breadth-first search

Data structures for meshes
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null)

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 56Andrew Nealen, Rutgers, 2011

� Example: efficient breadth-first search

Data structures for meshes
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null)

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 57Andrew Nealen, Rutgers, 2011

� Example: efficient breadth-first search

Data structures for meshes
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null)

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 58Andrew Nealen, Rutgers, 2011

� Example: efficient breadth-first search

Data structures for meshes
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null)

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 59Andrew Nealen, Rutgers, 2011

� Example: efficient breadth-first search

Data structures for meshes
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null)

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 60Andrew Nealen, Rutgers, 2011

� Example: efficient breadth-first search

Data structures for meshes
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null)

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 61Andrew Nealen, Rutgers, 2011

Data structures for meshes
Criteria for design

� Maximal number of vertices (i.e., how large are the models?)

� Available memory size

� Required operations

� Mesh updates (edge collapse, edge flip)

� Neighborhood queries� Neighborhood queries

� Distribution of operations (what are the most

common/frequent ones?)

� How can we compare different data structures?

1/18/2011 62Andrew Nealen, Rutgers, 2011

