CS 523: Computer Graphics, Spring 2011

Shape Modeling

Shape Representations
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= Shape representation

mplicits

= Points

" Parametric surfaces
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Course topics

= Shape representation
= Subdivision surfaces
" Polygonal meshes
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Shape representation

= Where does the shape
come from?

= Modeling “by hand”:

= Higher-level representations, |
amendable to modification,

control

= Parametric surfaces,
subdivision surfaces, implicits =

= Acquired real-world objects:
= Discrete sampling
= Points, meshes
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Points
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Shape acquisition

Sampling of real world objects




Points

= Standard 3D data from a variety of sources

= Often results from scanners

" Potentially noisy

" Depth imaging (e.g. by
triangulation

" Registration of multiple images
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Points

" points = unordered set of 3-tuples
= Often converted to other reps

= Meshes, implicits, parametric surfaces
= Easier to process, edit and/or render

= Efficient point processing and modeling
requires a spatial partitioning data structure

" To figure out neighborhoods
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Points

Neighborhood information

= Why do we need neighbors?

need normals (for shading) upsampling — need to count density

" Need sub-linear implementations of

= k-nearest neighbors to point x
p,—x|<e¢

" |n radius search ‘
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Spatial Data Structures

Commonly used for point processing

= Regular uniform 3D lattice N
= Simple point insertion by T i 4?
coordinate discretization I 1 ;
= Simple proximity queries by | %ﬁ;"
searching neighboring cells =

" Determining lattice parameters
(i.e. cell dimensions) is nontrivial

" Generally unbalanced, i.e. many empty cells
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Spatial Data Structures

Commonly used for point processing

" (Octree

= Splits each cell into 8 equal cells

=

= Adaptive, i.e. only splits when
too many points in cell macH TIT

10:00! | 10

= Proximity search by (recursive)
tree traversal and distance to | o £
neighboring cells E—

—
—

" Tree might not be balanced

Andrew Nealen, Rutgers, 2011 1/18/2011 11



Spatial Data Structures

Commonly used for point processing

= Kd-Tree - @ . RIS e ()
= Each cell is individually ) Tle et
split along the median [ +&.° "
into two cells T
= Same amount of points @

in cells

= Perfectly balanced tree

= Proximity search similar to the recursive
search in an Octree

= More data storage required for
inhomogeneous cell dimensions
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Parametric Curves and Surfaces

= Curves are 1-dimensional parameterizations

P1 P12

PA .F:C_h % PB
Po* / \ P23
| |

P2
®

./.

P3

= Surfaces are 2-dimensional parameterizations

Control Polygon

Control Point
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Parametric Curves and Surfaces

Examples
= Explicit curve/circle in 2D
p:R—o>R.d=123,...
£ p(2) = (x(2),y(1),2(1))

p(t) = r- (cos(t),sin(¢),0)
t e [0,27]



Parametric Curves and Surfaces

Examples

= Explicit surface/sphere in 3D

q:R°—>R,d=12,3,...
(u,v) = q(u,v) = (x(u,v), (1, v),z(1,v))

p(u,v) = r- (cos(u)cos(v),sin(u)cos(v),sin(v))
(u,v) € 0,27 x[-7m /2, 7/2]



Parametric Curves

Continuity and regularity

" Curve segment p:[ab]—>R',d=123,...

P2
* The same segment can be /
P

parameterized differently 1
p, :[0,1]] = R’,p(¢1) = tP. + (1-t)P,
p,:[0,1] > R’.p(¢t) = t’P +(1-t)P,

= A parametric curve is n-times continuously differentiable if
the image p is n-times continuously differentiable (C")

" The derivative p’(?) at position ¢ is a tangent vector
" A curve is regular when p is differentiable and p’(¢) # 0



Parametric Curves

Continuity and regularity

/

" Example
p:[-2.2]— R’.p(¥) =(¢°,t%,0)

p'(1)=(3¢°,2¢,0) = p'(0)=0

" pis continuously differentiable,

but not regular at position =0

" The regularity of a curve can be expressed as its
visual smoothness

" The tangent vector can be interpreted as the
velocity (compare to physics v=7¢')



Parametric Curves

Arc length parameterization

" A curve is parameterized by arc length when
p'@)|=1, t€[a,b]

" Any regular curve can be parameterized by
arc length

" For arc length parameterized curves:

T (S) — p'(S) Tangent vector
K(s) =p"(s) Curvature vector
K(s) = p”(S)H Curvature (scalar)




Parametric Surfaces

Tensor product surfaces

" Example: Bezier surfaces

= Surface lies in convex hull
of control points

= Surface interpolates the
four corner control points

" Boundary curves are

Bezier curves defined only
by control points on the boundary

= Other: B-Spline patches, NURBS, etc...
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Parametric Curves and Surfaces

" Advantages
= Easy to generate points on the curve/surface
= Separates x/y/z components

" Disadvantages
= Hard to determine inside/outside

" Hard to determine if a point is on the
curve/surface
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Implicit Curves and Surfaces

lllustration




Implicit Curves and Surfaces

Examples
" Implicit circle and sphere
f:R* >R g:R° >R
K={peR:f(p)=0} K={peR :g(p)=0}

fey)y=x"+y —r’ gx,y,2)=x"+y +z° =1



Implicit Curves and Surfaces
Definition
= Definition g:R°—>R
K=g'(0)={p € R’ :g(p)=0}

= Space partitioning

{peR’:g(p)<0} Inside
{peR’:g(p)=0} Curve/Surface
{peR’:g(p)>0} Outside
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Implicit Curves and Surfaces
Gradient

" The normal vector to the surface is given by
the gradient of the (scalar) implicit function

e 2EE

= Example

glx,y,2)=x>+y’+z°—r

Va(x,y,2)= (2x,2y,2z)

Vg(x,y,2)=(2,2,0)
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Implicit Curves and Surfaces

Smooth set operations
= Standard operations: union and intersection

& ac o Usp)=ming @)

N
Ogi(p) —maxg; (p)

" |n many cases, smooth blending is desired
= Pasko and Savchenko [1994]

guf =5 e+ g+ ~2agf )
enf =g+ /+g + 1 ~2agf )
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Implicit Curves and Surfaces

Smooth set operations

" Examples .

a =0 a =1

" For o= 1, this is equivalent to min and max

limgu f =4 g+ f—+/(g— f) =g+f—‘g;f‘ = min(g, /)

a—l 2

limgn f=5 g+/+(E-/) =g;f+ ‘g;ﬂ =max(g, /)
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Implicit Curves and Surfaces
Blobs

= Suggested by Blinn [1982]

" Defined implicitly by a potentlal function around a
pointp;:  g(p)= ae e

= Set operations by simple addition/subtraction
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Implicit Curves and Surfaces

" Advantages
= Easy to determine inside/outside

" Easy to determine if a point is on the
curve/surface

" Disadvantages

* Hard to generate points on the curve/surface
" Does not lend itself to (real-time) rendering
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Polygonal Meshes

" Boundary representations of objects

= Surfaces, polyhedrons, triangles, quadrilaterals

" How are these objects stored?
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Definitions

Geometric graph

" A Graph is a pair G=(V,E)
" Vis a nonempty set of n distinct vertices

Po> P1> -5 Py
= E is a set of edges (p;, p;)

= |f Pis a (discrete) subset of R? with d > 2, then
G=(V,E) is a geometric graph

" The degree or valence of a vertex describes
the number of edges incident to this vertex



Definitions
Edges

Two edges are neighbors if they share a

common vertex

Edges are generally not oriented, and are

noted as (p;, p;)

Halfedges are edges with add
An edge is comprised of two

>

eC

Nd

orientation
fedges




Definitions
Polygon

= A geometric graph Q=(V,E) with V={p,, p;, ---» P,,.1}

< R?with d > 2 and E={(py, p,),(P1> P2)s+- (P2 Prt)}
is a polygon

Ps Ps

Py P P4
P>

= A polygon is P,
" Planar, if all vertices lie on a plane
" Closed, if py=p,_;
" Simple, if the polygon does not self-intersect



Definitions

Polygonal mesh

= A finite set M of closed, simple polygons Q. is
a polygonal mesh if:

" The intersection of enclosed regions
of any two polygons in M is empty

" The intersection of two polygons in K
M is either empty, a vertex ve 'V or
an edge ecE

" Every edge belongs to at least one polygon



Definitions

Polygonal mesh

" (Continued) The set of all edges that belong to
only one polygon is termed the I~
boundary of the polygonal mesh, and /\ \
is either empty or forms closed loops \/l

" |f the set of edges that belong to
only one polygon is empty, then the polygonal
mesh is closed

" The set of all vertices and edges in a
polygonal mesh form a graph



Definitions
Polyhedron

" A polygonal mesh is a polyhedron if
= Each edge is part of two polygons (it is closed)

" Every vertex veV is part of finite, cyclic ordered
set of polygons {Q;}

* The polygons incident to a vertex v can be ordered,
such that Q;and Q; share an edge incident to v

o D%

" The union of all polygons forms a single connected
component




Definitions
Manifold

= A polygonal mesh is a 2-manifold if It is
everywhere locally homeomorphic P
to a (half) Euclidean 2-ball (a disk) ‘)P)

= A coffee cup is homeomorphic to a torus

» Examples for a non-manifold vertex and a
non-manifold edge

o D%

Andrew Nealen, Rutgers, 2011 1/18/2011 39



Definitions
Polyhedron

" The union of all polygonal areas is the surface
of the polyhedron

" The polygonal areas of a polyhedron are also
known as faces

= Every polyhedron partitions space into two
areas; inside and outside the polyhedron
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Definitions

Orientation

" Every face of a polygonal mesh is orientable

» by defining “clockwise” (as opposed to
“counterclockwise”). Two possible orientations

" Defines the sign of the

surface normal

" Two neighboring fac

s 16

ets o0, 1

are equally oriented, if the edge directions of

the shared edge (inc

uced by the face

orientations) are opposing QmO\




Definitions
Orientability

= A polygonal mesh is orientable, if the incident
faces to every edge can be equally oriented

" |f the faces are equally oriented for every edge,
the mesh is oriented

= Notes

= Every non-orientable closed mesh
embedded in R? intersects itself

" The surface of a polyhedron is
always orientable
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Euler-Poincaré Formula

= Relation between #vertices, #edges and #faces
of a polygonal mesh

m Example: v = #vertices

¢ = #edges

f = #faces
Andrew Nealen, Rutgers, 2011 1/18/2011 43
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Euler-Poincaré Formula

" Theorem (Euler): The sum
Y(M)=v—e+f
is constant for a given topology, no matter
which mesh we choose

" |[f M has one boundary loop:
Y(M)=v—e+f=1

" |[f M is homeomorphic to a sphere:
Y(M)=v—e+f=2



Euler-Poincaré Formula
Usage

Let‘s count the edges and faces in a closed triangle
mesh:
= Ratio of edges to faces: e =3/2f

= each edge belongs to exactly 2 triangles
= each triangle has exactly 3 edges

= Ratio of vertices to faces: f ~ 2v
" 2=v-—e+f=v-3/2f+f
m Q—vy=—f /2
= Ratio of edges to vertices: e ~ 3v
= Average degree of a vertex: 6

= 2 vertices incident on each edge



Euler-Poincaré Formula

Genus

" Theorem: if a polyhedron M is homeomorphic
to a sphere with g handles (“holes”) then

Y(M)=v—e+f

=2(1-g)

" o is called the genus of M st

ke

This is not a handle,
it’s a boundary loop

handle S
Ny S |
\\_w /

Andrew Nealen, Rutgers, 2011 1/18/2011 46



&=

Andrew Nealen, Rutgers, 2011

Euler-Poincaré Formula

Example: simple torus

v—e+f=2(1-g)
8—16+8=2(1-1)
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Euler-Poincaré Formula

Generalization

= Theorem: Let

v — H# vertices

e— # edges

f — # faces

c — # connected components
h— # boundary loops

g — # handles (the genus)
then:
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v-e+f-h=2(c-g)

=
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Data structures for meshes

Indexed Face Set

Vertex list Face list
.11 6(1,1,1) (Coordinate3) (IndexedFaceSet)
4001) (T 5(1.0.1) 0 0.0 00 00[(0 0123
1 1.0 00 0.0(|1 0154
...':""3'([);1',0 2(1,1,0) 2 1.0 1.0 0.0 2 1 2 6 5
L [/ 3 00 10 00||3 2376
0 (0,0,0) 1(1,0,0) 4 0.0 0.0 1.0 4 3047
5 10 00 10||5 4567
6 1.0 1.0 1.0
7 0.0 1.0 1.0




Data structures for meshes

Space requirements

= Coordinates/attributes 3x16+K bits/vertex

X y Z|C
vertex 2 X y Z|C
vertex 3 | & Y ZC

vertex 1

= Connectivity 3xlog,(V) bits/triangle
2

Triangle |

Triangle 2

Triangle 3

1
3
4
Triangle 4 [
6
8

Triangle 5

—| oo T n| F| w

Lhl Lnj Ll k2| b2

Trangle &

= When uncompressed, connectivity dominates
= Reminder: f = 2v... so after 256 vertices
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Data structures for meshes

Indexed Face Set — Problems

" |Information about neighbors is not explicit

= Finding neighboring vertices/edges/faces etc. costs O(v)
time!

= |ocal mesh modifications cost O(v)

= Breadth-first search costs O(k*v) where k = # found
vertices
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Data structures for meshes
Neighborhood relations [Weiler 1985]

= All possible neighborhood relationships:

1. Vertex —\Vertex \AY;
2. Vertex - Edge VE
3. Vertex -—Face VF ' ' '
4. Edge  —Vertex EV vV VE VF
5. Edge —Edge EE
6. Edge —Face EF ﬂ ﬂ ﬂ
7. Face — Vertex FV EV EE EF
8. Face — Edge FE N D c c
9. Face — Face FF F

FV FE FF

/

o »
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Data structures for meshes

Half-edge data structure

0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0

6
11
15
18
20

Vertexlist

\% coord

o1 22 0 0.0 0.0

v /< 2 1 1.0 0.0
7% P Ve y“ 2 1.0 | 1.0
./ / Z_zo 300 1.0
Va Vs > 4 0.0 0.0
5 1.0 0.0

v > 6 1.0 1.0

CCTITTIII T T D - 7 0.0 1.0

Vs /Vz /
>/ Half-Edgelist
Vo V, >
he | vstart next prev opp

/4—7 PR 4 0 0 I3

- 13/ y 3 /‘ / A 1 1 2 0

é ' é 2 2 3 1
> 12 ., > 3 3 0 2

\ 4 15 > v 5 > 4 4 5 7

— 7 < 5 5 6 4

3 1 ] 6 1 71 5

—/ fa —/ 7.0 4 6

0o ; § 1 9 11

9 5 10 8

10 6 11 9

11 2 8 10
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he vstart next prev

12
13
14
15
16
17
18
19
20
21
22
23

he

— | —

AW O A WD~ O

2

AN A WO RN W

13
14
15
12
17
18
19
16
21
22
23
20

Face

U‘I-PUJ[\)P—‘Oy—b

15
12
13
14
19
16
17
18
23
20
21
22

e0
e8
e4
el6
el2
e20

opp
10

22
19

21

14

16
13
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Data structures for meshes

Half-edge data structure

= Each atomic insertion into the data structure (i.e., vertex,
edge or face insertion) requires constant space and time

2

HE
1 1
1 1 Triangle face:
prev = next->next
Vv F



Data structures for meshes

Half-edge data structure

= All basic queries take constant O(1) time!
" |n particular, the query time is independent of the model

f, ‘ f,
AN /
. /
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Data structures for meshes

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

g.append (he) ;

1f (he.opposite != null)
g.append (he.opposite) ;

while (! g.isEmpty()) {
he=qg.first();
// do work
1f (he.next.opposite != null)
g.append (he.next.opposite) ;
1f (he.next.next.opposite != null)

g.append (he.next.next.opposite)
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Half-edge data structure
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Data structures for meshes

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

g.append (he) ;

1f (he.opposite != null)
g.append (he.opposite) ;

while (! g.isEmpty()) {
he=qg.first();
// do work
1f (he.next.opposite != null)
g.append (he.next.opposite) ;
1f (he.next.next.opposite != null)

g.append (he.next.next.opposite)
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Half-edge data structure
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Data structures for meshes

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

g.append (he) ;

1f (he.opposite != null)
g.append (he.opposite) ;

while (! g.isEmpty()) {
he=qg.first();
// do work
1f (he.next.opposite != null)
g.append (he.next.opposite) ;
1f (he.next.next.opposite != null)

g.append (he.next.next.opposite)
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Half-edge data structure
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Data structures for meshes

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

g.append (he) ;

1f (he.opposite != null)
g.append (he.opposite) ;

while (! g.isEmpty()) {
he=qg.first();
// do work
1f (he.next.opposite != null)
g.append (he.next.opposite) ;
1f (he.next.next.opposite != null)

g.append (he.next.next.opposite)
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Half-edge data structure
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Data structures for meshes

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

g.append (he) ;

1f (he.opposite != null)
g.append (he.opposite) ;

while (! g.isEmpty()) {
he=qg.first();
// do work
1f (he.next.opposite != null)
g.append (he.next.opposite) ;
1f (he.next.next.opposite != null)

g.append (he.next.next.opposite)
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Half-edge data structure
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Data structures for meshes

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

g.append (he) ;

1f (he.opposite != null)
g.append (he.opposite) ;

while (! g.isEmpty()) {
he=qg.first();
// do work
1f (he.next.opposite != null)
g.append (he.next.opposite) ;
1f (he.next.next.opposite != null)

g.append (he.next.next.opposite)
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Half-edge data structure
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Data structures for meshes

Criteria for design

Maximal number of vertices (i.e., how large are the models?)
Available memory size

Required operations

= Mesh updates (edge collapse, edge flip)
= Neighborhood queries

Distribution of operations (what are the most
common/frequent ones?)

How can we compare different data structures?



