CS 523: Computer Graphics, Spring 2011 Shape Modeling

Shape Representations

Course topics

- Shape representation
- Points
- Parametric surfaces

- Implicits

Course topics

- Shape representation
- Subdivision surfaces
- Polygonal meshes

Shape representation

- Where does the shape come from?
- Modeling "by hand":
- Higher-level representations, amendable to modification, control
- Parametric surfaces, subdivision surfaces, implicits

- Acquired real-world objects:
- Discrete sampling
- Points, meshes

Points

Shape acquisition

 Sampling of real world objects

Points

- Standard 3D data from a variety of sources
- Often results from scanners
- Potentially noisy

- Depth imaging (e.g. by triangulation
- Registration of multiple images

Points

- points = unordered set of 3-tuples
- Often converted to other reps
- Meshes, implicits, parametric surfaces

- Easier to process, edit and/or render
- Efficient point processing and modeling requires a spatial partitioning data structure
- To figure out neighborhoods

Points

Neighborhood information

- Why do we need neighbors?

need normals (for shading)

upsampling - need to count density
- Need sub-linear implementations of
- k-nearest neighbors to point \mathbf{x}
- In radius search $\left\|\mathbf{p}_{i}-\mathbf{x}\right\|<\varepsilon$

Spatial Data Structures

Commonly used for point processing

- Regular uniform 3D lattice
- Simple point insertion by coordinate discretization
- Simple proximity queries by searching neighboring cells

- Determining lattice parameters (i.e. cell dimensions) is nontrivial
- Generally unbalanced, i.e. many empty cells

Spatial Data Structures

Commonly used for point processing

- Octree
- Splits each cell into 8 equal cells
- Adaptive, i.e. only splits when too many points in cell
- Proximity search by (recursive) tree traversal and distance to neighboring cells

- Tree might not be balanced

Spatial Data Structures

Commonly used for point processing

- Kd-Tree
- Each cell is individually split along the median into two cells
- Same amount of points
 in cells
- Perfectly balanced tree
- Proximity search similar to the recursive search in an Octree
- More data storage required for inhomogeneous cell dimensions

Parametric Curves and Surfaces

Parametric Curves and Surfaces

- Curves are 1-dimensional parameterizations

$$
S(t)=\mathbf{x}_{t}
$$

- Surfaces are 2-dimensional parameterizations

$$
S\left(x_{,}, y\right)=X_{t}
$$

Parametric Curves and Surfaces

Examples

- Explicit curve/circle in 2D

$$
\begin{aligned}
& \mathbf{p}: R \rightarrow R^{d}, d=1,2,3, \ldots \\
& t \mapsto \mathbf{p}(t)=(x(t), y(t), z(t)) \\
& \mathbf{p}(t)=r \cdot(\cos (t), \sin (t), 0) \\
& t \in[0,2 \pi]
\end{aligned}
$$

Parametric Curves and Surfaces

Examples

- Explicit surface/sphere in 3D

$$
\begin{aligned}
& \mathbf{q}: R^{2} \rightarrow R^{d}, d=1,2,3, \ldots \\
& (u, v) \mapsto \mathbf{q}(u, v)=(x(u, v), y(u, v), z(u, v)) \\
& \mathbf{p}(u, v)=r \cdot(\cos (u) \cos (v), \sin (u) \cos (v), \sin (v)) \\
& (u, v) \in[0,2 \pi] \times[-\pi / 2, \pi / 2]
\end{aligned}
$$

Parametric Curves

Continuity and regularity

- Curve segment $\quad \mathbf{p}:[a, b] \rightarrow R^{d}, d=1,2,3, \ldots$
- The same segment can be parameterized differently

$$
\begin{aligned}
& \mathbf{p}_{1}:[0,1] \rightarrow R^{3}, \mathbf{p}(t)=t P_{1}+(1-t) P_{2} \\
& \mathbf{p}_{2}:[0,1] \rightarrow R^{3}, \mathbf{p}(t)=t^{2} P_{1}+\left(1-t^{2}\right) P_{2}
\end{aligned}
$$

- A parametric curve is n-times continuously differentiable if the image \mathbf{p} is n-times continuously differentiable (C^{n})
- The derivative $\mathbf{p}^{\prime}(t)$ at position t is a tangent vector
- A curve is regular when \mathbf{p} is differentiable and $\mathbf{p}^{\prime}(t) \neq \mathbf{0}$

Parametric Curves

Continuity and regularity

- Example

$$
\begin{aligned}
& \mathbf{p}:[-2,2] \rightarrow R^{3}, \mathbf{p}(t)=\left(t^{3}, t^{2}, 0\right) \\
& \mathbf{p}^{\prime}(t)=\left(3 t^{2}, 2 t, 0\right) \Rightarrow \mathbf{p}^{\prime}(0)=0
\end{aligned}
$$

- p is continuously differentiable, but not regular at position $t=0$

- The regularity of a curve can be expressed as its visual smoothness
- The tangent vector can be interpreted as the velocity (compare to physics $\mathbf{v}=\mathbf{s}^{\prime}$)

Parametric Curves

Arc length parameterization

- A curve is parameterized by arc length when

$$
\left\|\mathbf{p}^{\prime}(t)\right\|=1, t \in[a, b]
$$

- Any regular curve can be parameterized by arc length
- For arc length parameterized curves:

$$
\begin{array}{ll}
T(s):=\mathbf{p}^{\prime}(s) & \text { Tangent vector } \\
K(s):=\mathbf{p}^{\prime \prime}(s) & \text { Curvature vector } \\
\kappa(s):=\left\|\mathbf{p}^{\prime \prime}(s)\right\| & \text { Curvature (scalar) }
\end{array}
$$

Parametric Surfaces

Tensor product surfaces

- Example: Bezier surfaces
- Surface lies in convex hull of control points
- Surface interpolates the four corner control points
- Boundary curves are Bezier curves defined only
 by control points on the boundary
- Other: B-Spline patches, NURBS, etc...

Parametric Curves and Surfaces

- Advantages
- Easy to generate points on the curve/surface
- Separates x/y/z components
- Disadvantages
- Hard to determine inside/outside
- Hard to determine if a point is on the curve/surface

Implicit Curves and Surfaces

Implicit Curves and Surfaces

Illustration

Implicit Curves and Surfaces

Examples

- Implicit circle and sphere

$$
\begin{array}{ll}
f: R^{2} \rightarrow R & g: R^{3} \rightarrow R \\
K=\left\{\mathbf{p} \in R^{2}: f(\mathbf{p})=0\right\} & K=\left\{\mathbf{p} \in R^{3}: g(\mathbf{p})=0\right\} \\
f(x, y)=x^{2}+y^{2}-r^{2} & g(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}
\end{array}
$$

Implicit Curves and Surfaces

Definition

- Definition $g: \mathrm{R}^{3} \rightarrow \mathrm{R}$

$$
K=g^{-1}(0)=\left\{\mathbf{p} \in \mathrm{R}^{3}: g(\mathbf{p})=0\right\}
$$

- Space partitioning

$$
\begin{array}{ll}
\left\{\mathbf{p} \in \mathrm{R}^{3}: g(\mathbf{p})<0\right\} & \text { Inside } \\
\left\{\mathbf{p} \in \mathrm{R}^{3}: g(\mathbf{p})=0\right\} & \text { Curve/Surface } \\
\left\{\mathbf{p} \in \mathrm{R}^{3}: g(\mathbf{p})>0\right\} & \text { Outside }
\end{array}
$$

Implicit Curves and Surfaces

Gradient

- The normal vector to the surface is given by the gradient of the (scalar) implicit function

$$
\nabla g(x, y, z)=\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)^{\mathrm{T}}
$$

- Example

$$
\begin{aligned}
& g(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2} \\
& \nabla g(x, y, z)=(2 x, 2 y, 2 z)^{\mathrm{T}}
\end{aligned}
$$

$$
\nabla g(x, y, z)=(2,2,0)^{\mathrm{T}}
$$

Implicit Curves and Surfaces

Smooth set operations

- Standard operations: union and intersection

$$
\begin{aligned}
& \bigcup_{i} g_{i}(\mathbf{p})=\min g_{i}(\mathbf{p}) \\
& \bigcap_{i} g_{i}(\mathbf{p})=\max g_{i}(\mathbf{p})
\end{aligned}
$$

- In many cases, smooth blending is desired
- Pasko and Savchenko [1994]

$$
\begin{aligned}
& g \cup f=\frac{1}{1+\alpha}\left(g+f-\sqrt{g^{2}+f^{2}-2 \alpha g f}\right) \\
& g \cap f=\frac{1}{1+\alpha}\left(g+f+\sqrt{g^{2}+f^{2}-2 \alpha g f}\right)
\end{aligned}
$$

Implicit Curves and Surfaces

Smooth set operations

- Examples

$$
\alpha=0
$$

$$
\alpha=1
$$

- For $\alpha=1$, this is equivalent to min and max

Implicit Curves and Surfaces

Blobs

- Suggested by Blinn [1982]
- Defined implicitly by a potential function around a point $\mathbf{p}_{i}: \quad g_{i}(\mathbf{p})=a_{i} e^{-b_{i}\left\|\mathbf{p}-\mathbf{p}_{i}\right\|^{2}}$
- Set operations by simple addition/subtraction

Implicit Curves and Surfaces

- Advantages
- Easy to determine inside/outside
- Easy to determine if a point is on the curve/surface
- Disadvantages
- Hard to generate points on the curve/surface
- Does not lend itself to (real-time) rendering

Polygonal Meshes

Polygonal Meshes

- Boundary representations of objects
- Surfaces, polyhedrons, triangles, quadrilaterals

- How are these objects stored?

Definitions

Geometric graph

- A Graph is a pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V is a nonempty set of n distinct vertices
$\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}$
- E is a set of edges ($\mathbf{p}_{\mathrm{i}}, \mathbf{p}_{\mathrm{k}}$)
- If P is a (discrete) subset of R^{d} with $d \geq 2$, then $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a geometric graph
- The degree or valence of a vertex describes the number of edges incident to this vertex

Definitions

Edges

- Two edges are neighbors if they share a common vertex
- Edges are generally not oriented, and are noted as ($\mathbf{p}_{\mathrm{i}}, \mathbf{p}_{\mathrm{k}}$)
- Halfedges are edges with added orientation
- An edge is comprised of two halfedges

Definitions

Polygon

- A geometric graph $\mathrm{Q}=(\mathrm{V}, \mathrm{E})$ with $\mathrm{V}=\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right\}$ $\subset \mathrm{R}^{d}$ with $d \geq 2$ and $\mathrm{E}=\left\{\left(\mathbf{p}_{0}, \mathbf{p}_{1}\right),\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right), \ldots,\left(\mathbf{p}_{n-2}, \mathbf{p}_{n-1}\right)\right\}$ is a polygon
- A polygon is

- Planar, if all vertices lie on a plane
- Closed, if $\mathbf{p}_{0}=\mathbf{p}_{n-1}$
- Simple, if the polygon does not self-intersect

Definitions

Polygonal mesh

- A finite set M of closed, simple polygons Q_{i} is a polygonal mesh if:
- The intersection of enclosed regions of any two polygons in M is empty
- The intersection of two polygons in M is either empty, a vertex $\mathbf{v} \in \mathrm{V}$ or an edge $\mathbf{e} \in \mathrm{E}$

- Every edge belongs to at least one polygon

Definitions

Polygonal mesh

- (Continued) The set of all edges that belong to only one polygon is termed the boundary of the polygonal mesh, and is either empty or forms closed loops

- If the set of edges that belong to only one polygon is empty, then the polygonal mesh is closed
- The set of all vertices and edges in a polygonal mesh form a graph

Definitions

Polyhedron

- A polygonal mesh is a polyhedron if
- Each edge is part of two polygons (it is closed)
- Every vertex $\mathbf{v} \in \mathrm{V}$ is part of finite, cyclic ordered set of polygons $\left\{Q_{i}\right\}$
- The polygons incident to a vertex \mathbf{v} can be ordered, such that Q_{i} and Q_{j} share an edge incident to \mathbf{v}

- The union of all polygons forms a single connected component

Definitions

Manifold

- A polygonal mesh is a 2-manifold if It is everywhere locally homeomorphic to a (half) Euclidean 2-ball (a disk)
- A coffee cup is homeomorphic to a torus

- Examples for a non-manifold vertex and a non-manifold edge

Definitions

Polyhedron

- The union of all polygonal areas is the surface of the polyhedron
- The polygonal areas of a polyhedron are also known as faces
- Every polyhedron partitions space into two areas; inside and outside the polyhedron

Definitions

Orientation

- Every face of a polygonal mesh is orientable
- by defining "clockwise" (as opposed to "counterclockwise"). Two possible orientations
- Defines the sign of the surface normal
- Two neighboring facets
 are equally oriented, if the edge directions of the shared edge (induced by the face orientations) are opposing

Definitions

Orientability

- A polygonal mesh is orientable, if the incident faces to every edge can be equally oriented
- If the faces are equally oriented for every edge, the mesh is oriented
- Notes
- Every non-orientable closed mesh embedded in R^{3} intersects itself
- The surface of a polyhedron is always orientable

Euler-Poincaré Formula

- Relation between \#vertices, \#edges and \#faces of a polygonal mesh
- Example:

$$
\begin{aligned}
& \mathrm{v}=\text { \#vertices } \\
& \mathrm{e}=\text { \#edges } \\
& \mathrm{f}=\text { \#faces }
\end{aligned}
$$

$$
\begin{aligned}
& v=8 \\
& e=12 \\
& f=6
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}=8 \\
& \mathrm{e}=12+1 \\
& \mathrm{f}=6+1
\end{aligned}
$$

Euler-Poincaré Formula

- Theorem (Euler): The sum

$$
\chi(M)=v-e+f
$$

is constant for a given topology, no matter which mesh we choose

- If M has one boundary loop:

$$
\chi(M)=v-e+f=1
$$

- If M is homeomorphic to a sphere:

$$
\chi(M)=v-e+f=2
$$

Euler-Poincaré Formula

- Let's count the edges and faces in a closed triangle mesh:
- Ratio of edges to faces: $\mathrm{e}=3 / 2 \mathrm{f}$
- each edge belongs to exactly 2 triangles
- each triangle has exactly 3 edges
- Ratio of vertices to faces: $f \sim 2 v$
- $2=v-e+f=v-3 / 2 f+f$
- $2-v=-f / 2$
- Ratio of edges to vertices: $e^{\sim} 3 v$
- Average degree of a vertex: 6
- 2 vertices incident on each edge

Euler-Poincaré Formula

- Theorem: if a polyhedron M is homeomorphic to a sphere with g handles ("holes") then

$$
\chi(M)=v-e+f=2(1-g)
$$

- g is called the genus of M

This is not a handle, it's a boundary loop

Euler-Poincaré Formula Example: simple torus

$$
\begin{gathered}
\mathrm{v}-\mathrm{e}+\mathrm{f}=2(1-\mathrm{g}) \\
8-16+8=2(1-1)
\end{gathered}
$$

Euler-Poincaré Formula

Generalization

- Theorem: Let
- v- \# vertices
- e- \# edges
- f - \# faces
- c - \# connected components
- h- \# boundary loops
- g - \# handles (the genus) then:

$$
v-e+f-h=2(c-g)
$$

Data structures for meshes
 Indexed Face Set

Vertex list (Coordinate3)			
0	0.0	0.0	0.0
1	1.0	0.0	0.0
2	1.0	1.0	0.0
3	0.0	1.0	0.0
4	0.0	0.0	1.0
5	1.0	0.0	1.0
6	1.0	1.0	1.0
7	0.0	1.0	1.0

Face list (IndexedFaceSet)				
0	0	1	2	3
1	0	1	5	4
2	1	2	6	5
3	2	3	7	6
4	3	0	4	7
5	4	5	6	7

Data structures for meshes

Space requirements

- Coordinates/attributes 3x16+k bits/vertex

- Connectivity

3x $\log _{2}(\mathbf{V})$ bits/triangle

Triangle 1	1	2	3
Triangle 2	3	2	4
Triangle 3	4	2	5
Triangle 4	7	5	6
Triangle 5	6	5	8
Triangle 6	8	5	1

- When uncompressed, connectivity dominates
- Reminder: $\mathrm{f}=2 \mathrm{v}$... so after 256 vertices

Data structures for meshes

 Indexed Face Set - Problems- Information about neighbors is not explicit
- Finding neighboring vertices/edges/faces etc. costs O(v) time!
- Local mesh modifications cost $\mathrm{O}(\mathrm{v})$

- Breadth-first search costs $O\left(k^{*} v\right)$ where $k=\#$ found vertices

Data structures for meshes

Neighborhood relations [Weiler 1985]

- All possible neighborhood relationships:

1.	Vertex	- Vertex
2.	Vertex	- Edge
3.	Vertex	- Face
4.	Edge	- Vertex
5.	Edge	- Edge
6.	Edge	- Face
7.	Face	- Vertex
8.	Face	- Edge
9.	Face	FV
		FE
		FF

FV

EE

Data structures for meshes

Half-edge data structure

Vertexlist

V	coord			he
0	0.0	0.0	0.0	0
1	1.0	0.0	0.0	1
2	1.0	1.0	0.0	2
3	0.0	1.0	0.0	3
4	0.0	0.0	1.0	4
5	1.0	0.0	1.0	9
6	1.0	1.0	1.0	13
7	0.0	1.0	1.0	16

Face

f	e
0	e 0
1	e 8
2	e 4
3	e 16
4	e 12
5	e 20

Half-Edgelist

he	vstart	next	prev	opp	he	vstart	next	prev	opp
0	0	1	3	6	12	2	13	15	10
1	1	2	0	11	13	6	14	12	22
2	2	3	1	15	14	7	15	13	19
3	3	0	2	18	15	3	12	14	2
4	4	5	7	20	16	7	17	19	21
5	5	6	4	8	17	4	18	16	7
6	1	7	5	0	18	0	19	17	3
7	0	4	6	17	19	3	16	18	14
8	1	9	11	5	20	5	21	23	4
9	5	10	8	23	21	4	22	20	16
10	6	11	9	12	22	7	23	21	13
11	2	8	10	1	23	6	20	22	9

Data structures for meshes

Half-edge data structure

- Each atomic insertion into the data structure (i.e., vertex, edge or face insertion) requires constant space and time

Data structures for meshes

Half-edge data structure

- All basic queries take constant O (1) time!
- In particular, the query time is independent of the model size

Data structures for meshes

Half-edge data structure

- Example: efficient breadth-first search

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);
while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```


Data structures for meshes

Half-edge data structure

- Example: efficient breadth-first search

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);
while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```


Data structures for meshes

Half-edge data structure

- Example: efficient breadth-first search

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);
while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```


Data structures for meshes

Half-edge data structure

- Example: efficient breadth-first search

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);
while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```


Data structures for meshes

Half-edge data structure

- Example: efficient breadth-first search

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);
while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```


Data structures for meshes

Half-edge data structure

- Example: efficient breadth-first search

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);
while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```


Data structures for meshes

Criteria for design

- Maximal number of vertices (i.e., how large are the models?)
- Available memory size
- Required operations
- Mesh updates (edge collapse, edge flip)
- Neighborhood queries
- Distribution of operations (what are the most common/frequent ones?)
- How can we compare different data structures?

