
CS 523: Computer Graphics, Spring 2011

Shape Modeling

Shape Representations
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Course topics

� Shape representation

� Points

� Parametric surfaces

� Implicits� Implicits
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Course topics

� Shape representation

� Subdivision surfaces

� Polygonal meshes
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Shape representation

� Where does the shape 

come from?

� Modeling “by hand”:

� Higher-level representations, 

amendable to modification, amendable to modification, 

control

� Parametric surfaces, 

subdivision surfaces, implicits

� Acquired real-world objects:

� Discrete sampling

� Points, meshes
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Points
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Shape acquisition
Sampling of real world objects
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Points

� Standard 3D data from a variety of sources

� Often results from scanners

� Potentially noisy

� Depth imaging (e.g. by 

triangulation

� Registration of multiple images
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Points

� points = unordered set of 3-tuples

� Often converted to other reps

� Meshes, implicits, parametric surfaces

� Easier to process, edit and/or render� Easier to process, edit and/or render

� Efficient point processing and modeling 

requires a spatial partitioning data structure

� To figure out neighborhoods
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Points
Neighborhood information

� Why do we need neighbors?
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� Need sub-linear implementations of

� k-nearest neighbors to point x

� In radius search ε<− xpi

need normals (for shading) upsampling – need to count density
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Spatial Data Structures
Commonly used for point processing

� Regular uniform 3D lattice

� Simple point insertion by

coordinate discretization

� Simple proximity queries by � Simple proximity queries by 

searching neighboring cells

� Determining lattice parameters

(i.e. cell dimensions) is nontrivial

� Generally unbalanced, i.e. many empty cells
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Spatial Data Structures
Commonly used for point processing

� Octree

� Splits each cell into 8 equal cells

� Adaptive, i.e. only splits when

too many points in cell

� Proximity search by (recursive)� Proximity search by (recursive)

tree traversal and distance to

neighboring cells

� Tree might not be balanced
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Spatial Data Structures
Commonly used for point processing

� Kd-Tree

� Each cell is individually 

split along the median 

into two cells

� Same amount of points � Same amount of points 

in cells

� Perfectly balanced tree

� Proximity search similar to the recursive 

search in an Octree

� More data storage required for 

inhomogeneous cell dimensions
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Parametric Curves and Surfaces
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Parametric Curves and Surfaces

� Curves are 1-dimensional parameterizations

ttS x=)(

� Surfaces are 2-dimensional parameterizations
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tyxS x=),(
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Parametric Curves and Surfaces
Examples

� Explicit curve/circle in 2D

p :R→ Rd ,d =1,2,3,K

ta p(t) = x(t),y(t),z(t)( )
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ta p(t) = x(t),y(t),z(t)( )

p(t) = r ⋅ cos(t),sin(t),0( )
t ∈ [0,2π ]
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Parametric Curves and Surfaces
Examples

� Explicit surface/sphere in 3D

q :R2 → Rd ,d =1,2,3,K

(u,v) a q(u,v) = x(u,v),y(u,v),z(u,v)( )

Andrew Nealen, Rutgers, 2011 1/18/2011

  

(u,v) a q(u,v) = x(u,v),y(u,v),z(u,v)( )

p(u,v) = r ⋅ cos(u)cos(v),sin(u)cos(v),sin(v)( )
(u,v) ∈ [0,2π ]× [−π /2,π/2]
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Parametric Curves
Continuity and regularity

� Curve segment

� The same segment can be

parameterized differently

  p : [a,b] → Rd ,d =1,2,3,K

1P

2P

p1 : [0,1] → R3,p(t) = tP1 + (1− t)P2

� A parametric curve is n-times continuously differentiable if 

the image p is n-times continuously differentiable (C
n
)

� The derivative p’(t) at position t is a tangent vector

� A curve is regular when p is differentiable and p’(t) ≠ 0
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p1 : [0,1] → R ,p(t) = tP1 + (1− t)P2

p2 : [0,1] → R3,p(t) = t 2P1 + (1− t 2)P2
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Parametric Curves
Continuity and regularity

� Example

� p is continuously differentiable,

p : [−2,2] → R3,p(t) = (t 3,t 2,0)

′ p (t) = (3t 2,2t,0) ⇒ p'(0) = 0

� p is continuously differentiable,

but not regular at position t = 0

� The regularity of a curve can be expressed as its 

visual smoothness

� The tangent vector can be interpreted as the 

velocity (compare to physics v = s’)
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Parametric Curves
Arc length parameterization

� A curve is parameterized by arc length when

� Any regular curve can be parameterized by

arc length 

],[,1)( batt ∈=′p

arc length 

� For arc length parameterized curves:
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T(s) := ′ p (s)

K(s) := ′ ′ p (s)

κ(s) := ′ ′ p (s)

Tangent vector

Curvature vector

Curvature (scalar)
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Parametric Surfaces
Tensor product surfaces

� Example: Bezier surfaces

� Surface lies in convex hull 

of control points

� Surface interpolates the � Surface interpolates the 

four corner control points

� Boundary curves are 

Bezier curves defined only 

by control points on the boundary

� Other: B-Spline patches, NURBS, etc…
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Parametric Curves and Surfaces

� Advantages

� Easy to generate points on the curve/surface

� Separates x/y/z components

� Disadvantages

� Hard to determine inside/outside

� Hard to determine if a point is on the 

curve/surface
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Implicit Curves and Surfaces
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Implicit Curves and Surfaces
Illustration

Andrew Nealen, Rutgers, 2011 1/18/2011 23



Implicit Curves and Surfaces
Examples

� Implicit circle and sphere

f :R2 → R

{ }
g :R3 → R

{ }
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K = p∈ R2 : f (p) = 0{ }

f (x,y) = x 2 + y 2 − r2

K = p∈ R3 : g(p) = 0{ }

g(x,y,z) = x 2 + y 2 + z2 − r2
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Implicit Curves and Surfaces
Definition

� Definition

� Space partitioning

g : R3 → R

K = g−1 0( )= p∈ R3 : g(p) = 0{ }

� Space partitioning
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{p∈ R3 : g(p) < 0}

{p∈ R3 : g(p) = 0}

{p∈ R3 : g(p) > 0}

Inside

Curve/Surface

Outside
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Implicit Curves and Surfaces
Gradient

� The normal vector to the surface is given by 

the gradient of the (scalar) implicit function

∇g x,y,z( )=
∂g
∂x

,
∂g
∂y

,
∂g
∂z

 

 
 

 

 
 

T

� Example
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∇g x,y,z( )=
∂x

,
∂y

,
∂z 

 
 
 

g x,y,z( )= x 2 + y 2 + z2 − r2

∇g x,y,z( )= 2x,2y,2z( )T

∇g x,y,z( )= 2,2,0( )T
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Implicit Curves and Surfaces
Smooth set operations

� Standard operations: union and intersection

gi p( )
i

U = mingi p( )

gi p( )I = maxgi p( )

� In many cases, smooth blending is desired

� Pasko and Savchenko [1994]
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gi p( )
i

I = maxgi p( )

g∪ f = 1
1+α g+ f − g2 + f 2 − 2αgf( )

g∩ f = 1
1+α g+ f + g2 + f 2 − 2αgf( )
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Implicit Curves and Surfaces
Smooth set operations

� Examples

0α = 1α =

� For α = 1, this is equivalent to min and max
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0α = 1α =

lim
α →1
g∪ f = 1

2
g + f − g − f( )2 

 
  

 
 =
g + f

2
−
g− f

2
= min g, f( )

lim
α →1
g∩ f = 1

2
g + f + g − f( )2 

 
  

 
 =
g+ f

2
+
g − f

2
= max g, f( )
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Implicit Curves and Surfaces
Blobs

� Suggested by Blinn [1982]

� Defined implicitly by a potential function around a 

point pi:

� Set operations by simple addition/subtraction

gi p( )= aie
−bi p−p i

2

� Set operations by simple addition/subtraction
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0.1ib =

1ib =

5ib =
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Implicit Curves and Surfaces

� Advantages

� Easy to determine inside/outside

� Easy to determine if a point is on the 

curve/surfacecurve/surface

� Disadvantages

� Hard to generate points on the curve/surface

� Does not lend itself to (real-time) rendering
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Polygonal Meshes
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Polygonal Meshes

� Boundary representations of objects

� Surfaces, polyhedrons, triangles, quadrilaterals

� How are these objects stored?

Andrew Nealen, Rutgers, 2011 1/18/2011 32



Definitions
Geometric graph

� A Graph is a pair G=(V,E)

� V is a nonempty set of n distinct vertices

p0, p1, …, pn-1

� E is a set of edges (pi, pk)� E is a set of edges (pi, pk)

� If P is a (discrete) subset of Rd with d ≥ 2, then 

G=(V,E) is a geometric graph

� The degree or valence of a vertex describes 

the number of edges incident to this vertex
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Definitions
Edges

� Two edges are neighbors if they share a 

common vertex

� Edges are generally not oriented, and are 

noted as (p , p )noted as (pi, pk)

� Halfedges are edges with added orientation

� An edge is comprised of two halfedges
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=

34



Definitions
Polygon

� A geometric graph Q=(V,E) with V={p0, p1, …, pn-1}

⊂ Rd with d ≥ 2 and E={(p0, p1),(p1, p2),...,(pn-2, pn-1)} 

is a polygon

p0 p1 p4

p5p6

� A polygon is

� Planar, if all vertices lie on a plane

� Closed, if p0 = pn-1

� Simple, if the polygon does not self-intersect
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p0 p1
p2

p3

p4
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Definitions
Polygonal mesh

� A finite set M of closed, simple polygons Qi is 

a polygonal mesh if:

� The intersection of enclosed regions 

of any two polygons in M is emptyof any two polygons in M is empty

� The intersection of two polygons in 

M is either empty, a vertex v∈V or 

an edge e∈E

� Every edge belongs to at least one polygon
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Definitions
Polygonal mesh

� (Continued) The set of all edges that belong to 

only one polygon is termed the 

boundary of the polygonal mesh, and 

is either empty or forms closed loops

� If the set of edges that belong to 

only one polygon is empty, then the polygonal 

mesh is closed

� The set of all vertices and edges in a 

polygonal mesh form a graph
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Definitions
Polyhedron

� A polygonal mesh is a polyhedron if

� Each edge is part of two polygons (it is closed)

� Every vertex v∈V is part of finite, cyclic ordered 

set of polygons {Qi}set of polygons {Qi}

� The polygons incident to a vertex v can be ordered, 

such that Qi and Qj share an edge incident to v

� The union of all polygons forms a single connected 

component
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Definitions
Manifold

� A polygonal mesh is a 2-manifold if It is 

everywhere locally homeomorphic 

to a (half) Euclidean 2-ball (a disk)

� A coffee cup is homeomorphic to a torus� A coffee cup is homeomorphic to a torus

� Examples for a non-manifold vertex and a 

non-manifold edge
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Definitions
Polyhedron

� The union of all polygonal areas is the surface

of the polyhedron

� The polygonal areas of a polyhedron are also 

known as facesknown as faces

� Every polyhedron partitions space into two 

areas; inside and outside the polyhedron
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Definitions
Orientation

� Every face of a polygonal mesh is orientable

� by defining “clockwise” (as opposed to 

“counterclockwise”). Two possible orientations

� Defines the sign of the 6767� Defines the sign of the 

surface normal

� Two neighboring facets 

are equally oriented, if the edge directions of 

the shared edge (induced by the face 

orientations) are opposing
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+

3
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Definitions
Orientability

� A polygonal mesh is orientable, if the incident 

faces to every edge can be equally oriented

� If the faces are equally oriented for every edge, 

the mesh is orientedthe mesh is oriented

� Notes

� Every non-orientable closed mesh 

embedded in R3 intersects itself

� The surface of a polyhedron is 

always orientable
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� Relation between #vertices, #edges and #faces 

of a polygonal mesh

� Example: v = #vertices

Euler-Poincaré Formula

� Example: v = #vertices

e  = #edges

f  = #faces

v = 8

e  = 12

f  = 6

v = 8

e  = 12+1

f  = 6 +1
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� Theorem (Euler): The sum
χ(M) = v – e + f

is constant for a given topology, no matter 
which mesh we choose

Euler-Poincaré Formula

� If M has one boundary loop:
χ(M) = v – e + f = 1

� If M is homeomorphic to a sphere:
χ(M) = v – e + f = 2
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Euler-Poincaré Formula
Usage

� Let‘s count the edges and faces in a closed triangle 

mesh:

� Ratio of edges to faces: e = 3/2 f

� each edge belongs to exactly 2 triangles

� each triangle has exactly 3 edges� each triangle has exactly 3 edges

� Ratio of vertices to faces: f ~ 2v

� 2 = v – e + f = v – 3/2 f + f

� 2 – v = – f  / 2

� Ratio of edges to vertices: e ~ 3v

� Average degree of a vertex:  6

� 2 vertices incident on each edge
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Euler-Poincaré Formula
Genus

� Theorem: if a polyhedron M is homeomorphic 
to a sphere with g handles (“holes“) then

χ(M) = v – e + f = 2(1 – g)χ(M) = v – e + f = 2(1 – g)

� g is called the genus of M

This is not a handle,

it’s a boundary loop

handle
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Euler-Poincaré Formula
Example: simple torus

v – e + f = 2(1 – g)

8 – 16 + 8 = 2(1 – 1)8 – 16 + 8 = 2(1 – 1)
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Euler-Poincaré Formula
Generalization

� Theorem: Let

� v – # vertices

� e – # edges

� f – # faces 

� c – # connected components� c – # connected components

� h – # boundary loops

� g – # handles (the genus)

then: 
v – e + f – h = 2 (c – g)

1/18/2011 48Andrew Nealen, Rutgers, 2011



4 (0,0,1) 5 (1,0,1)

6 (1,1,1)
7 (0,1,1)

Vertex list 
(Coordinate3)

0    0.0   0.0   0.0

1    1.0   0.0   0.0

Face list
(IndexedFaceSet)

0     0  1  2  3

1     0  1  5  4

2     1  2  6  5

Data structures for meshes
Indexed Face Set

0 (0,0,0) 1 (1,0,0)

2 (1,1,0)3 (0,1,0) 2    1.0   1.0   0.0

3    0.0   1.0   0.0

4    0.0   0.0   1.0

5    1.0   0.0   1.0

6    1.0   1.0   1.0

7    0.0   1.0   1.0

2     1  2  6  5

3     2  3  7  6

4     3  0  4  7

5     4  5  6  7
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� Coordinates/attributes

� Connectivity

Data structures for meshes
Space requirements

� Connectivity

� When uncompressed, connectivity dominates

� Reminder: f = 2v... so after 256 vertices
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� Information about neighbors is not explicit

� Finding neighboring vertices/edges/faces etc. costs O(v) 
time!

� Local mesh modifications cost O(v) 

Data structures for meshes
Indexed Face Set – Problems

� Breadth-first search costs O(k*v) where k = # found 
vertices
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Data structures for meshes 
Neighborhood relations [Weiler 1985]

� All possible neighborhood relationships:

1. Vertex – Vertex VV

2. Vertex – Edge VE

3. Vertex – Face VF

4. Edge – Vertex EV
VV VFVE

4. Edge – Vertex EV

5. Edge – Edge EE

6. Edge – Face EF

7. Face – Vertex FV

8. Face – Edge FE

9. Face – Face FF

VV VFVE

EV EFEE

FV FFFE

V F

E
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Data structures for meshes 
Half-edge data structure

f e

0 e0

1 e8

2 e4

3 e16

4 e12

5 e20

v he

0 0.0 0.0 0.0 0

1 1.0 0.0 0.0 1

2 1.0 1.0 0.0 2

3 0.0 1.0 0.0 3

4 0.0 0.0 1.0 4

5 1.0 0.0 1.0 9

6 1.0 1.0 1.0 13

7 0.0 1.0 1.0 16

coord

FaceVertexlist

v2

v4 v5

v6
v7

v3

16

17 18

19

20

21
22

23

0

he    vstart next prev opp he  vstart next prev opp

0 0 1 3 6 12 2 13 15 10

1 1 2 0 11 13 6 14 12 22

2 2 3 1 15 14 7 15 13 19

3 3 0 2 18 15 3 12 14 2

4 4 5 7 20 16 7 17 19 21

5 5 6 4 8 17 4 18 16 7

6 1 7 5 0 18 0 19 17 3

7 0 4 6 17 19 3 16 18 14

8 1 9 11 5 20 5 21 23 4

9 5 10 8 23 21 4 22 20 16

10 6 11 9 12 22 7 23 21 13

11 2 8 10 1 23 6 20 22 9

Half-Edgelist
V0 V1

v2v3

1

2
7

6

5

3

4
8

9

15

12

13

14

11

10
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� Each atomic insertion into the data structure (i.e., vertex, 

edge or face insertion) requires constant space and time

Data structures for meshes 
Half-edge data structure

2

V F

HE

11

11 Triangle face:

prev = next->next
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� All basic queries take constant O(1) time! 

� In particular, the query time is independent of the model 

size

f1

Data structures for meshes 
Half-edge data structure

f1

f2

f3

f0
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� Example: efficient breadth-first search

Data structures for meshes 
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null) 

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}
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� Example: efficient breadth-first search

Data structures for meshes 
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null) 

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}
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� Example: efficient breadth-first search

Data structures for meshes 
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null) 

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}
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� Example: efficient breadth-first search

Data structures for meshes 
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null) 

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}
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� Example: efficient breadth-first search

Data structures for meshes 
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null) 

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}
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� Example: efficient breadth-first search

Data structures for meshes 
Half-edge data structure

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q.append(he);

if (he.opposite != null)if (he.opposite != null)

q.append(he.opposite);

while (! q.isEmpty()) {

he=q.first();

// do work

if (he.next.opposite != null) 

q.append(he.next.opposite);

if (he.next.next.opposite != null)

q.append(he.next.next.opposite)

}

1/18/2011 61Andrew Nealen, Rutgers, 2011



Data structures for meshes 
Criteria for design

� Maximal number of vertices (i.e., how large are the models?)

� Available memory size

� Required operations

� Mesh updates (edge collapse, edge flip)

� Neighborhood queries� Neighborhood queries

� Distribution of operations (what are the most 

common/frequent ones?)

� How can we compare different data structures?
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