CS 523: Computer Graphics, Spring 2011 Shape Modeling

Shape Representations

Course topics

- Shape representation
 - Points
 - Parametric surfaces
 - Implicits

Andrew Nealen, Rutgers, 2011

Course topics

- Shape representation
 - Subdivision surfaces
 - Polygonal meshes

Shape representation

- Where does the shape come from?
- Modeling "by hand":
 - Higher-level representations, amendable to modification, control
 - Parametric surfaces, subdivision surfaces, implicits
- Acquired real-world objects:
 - Discrete sampling
 - Points, meshes

Shape acquisition

Sampling of real world objects

- Standard 3D data from a variety of sources
 - Often results from scanners
 - Potentially noisy

- Depth imaging (e.g. by triangulation
- Registration of multiple images

- points = unordered set of 3-tuples
- Often converted to other reps
 - Meshes, implicits, parametric surfaces
 - Easier to process, edit and/or render
- Efficient point processing and modeling requires a spatial partitioning data structure
 - To figure out neighborhoods

Neighborhood information

Why do we need neighbors?

need normals (for shading)

upsampling – need to count density

- Need sub-linear implementations of
 - k-nearest neighbors to point x
 - In radius search $\|\mathbf{p}_i \mathbf{x}\| < \varepsilon$

Spatial Data Structures

Commonly used for point processing

- Regular uniform 3D lattice
 - Simple point insertion by coordinate discretization
 - Simple proximity queries by searching neighboring cells

- Determining lattice parameters (i.e. cell dimensions) is nontrivial
- Generally unbalanced, i.e. many empty cells

Spatial Data Structures

Commonly used for point processing

Octree

- Splits each cell into 8 equal cells
- Adaptive, i.e. only splits when too many points in cell
- Proximity search by (recursive) tree traversal and distance to neighboring cells
- Tree might not be balanced

Spatial Data Structures

Commonly used for point processing

- Kd-Tree
 - Each cell is individually split along the median into two cells
 - Same amount of points in cells
 - Perfectly balanced tree
 - Proximity search similar to the recursive search in an Octree
 - More data storage required for inhomogeneous cell dimensions

P2

P4

Parametric Curves and Surfaces

Parametric Curves and Surfaces

Curves are 1-dimensional parameterizations

$$S(t) = \mathbf{x}_t$$

Surfaces are 2-dimensional parameterizations

$$S(x, y) = \mathbf{x}_t$$

Parametric Curves and Surfaces Examples

Explicit curve/circle in 2D

$$\mathbf{p}: R \to R^d, d = 1, 2, 3, \dots$$
$$t \mapsto \mathbf{p}(t) = (x(t), y(t), z(t))$$

$$\mathbf{p}(t) = r \cdot (\cos(t), \sin(t), 0)$$
$$t \in [0, 2\pi]$$

Parametric Curves and Surfaces Examples

Explicit surface/sphere in 3D

$$\mathbf{q}: R^2 \to R^d, d = 1, 2, 3, \dots$$
$$(u, v) \mapsto \mathbf{q}(u, v) = (x(u, v), y(u, v), z(u, v))$$

$$\mathbf{p}(u,v) = r \cdot \left(\cos(u)\cos(v), \sin(u)\cos(v), \sin(v)\right)$$
$$(u,v) \in [0,2\pi] \times [-\pi/2, \pi/2]$$

Parametric Curves

 P_1

Continuity and regularity

- Curve segment $\mathbf{p}:[a,b] \rightarrow R^d, d=1,2,3,...$
 - The same segment can be parameterized differently

p₁: [0,1] →
$$R^3$$
, **p**(t) = $tP_1 + (1-t)P_2$
p₂: [0,1] → R^3 , **p**(t) = $t^2P_1 + (1-t^2)P_2$

- A parametric curve is n-times continuously differentiable if the image p is n-times continuously differentiable (Cⁿ)
- The derivative $\mathbf{p}'(t)$ at position *t* is a tangent vector
- A curve is regular when **p** is differentiable and $\mathbf{p'}(t) \neq \mathbf{0}$

 P_{2}

Parametric Curves

Continuity and regularity

• Example $\mathbf{p}: [-2,2] \rightarrow R^3, \mathbf{p}(t) = (t^3, t^2, 0)$ $\mathbf{p}'(t) = (3t^2, 2t, 0) \Rightarrow \mathbf{p}'(0) = 0$

p is continuously differentiable, but not regular at position t = 0

- The regularity of a curve can be expressed as its visual smoothness
- The tangent vector can be interpreted as the velocity (compare to physics v = s')

Parametric Curves

Arc length parameterization

- A curve is parameterized by arc length when $\|\mathbf{p}'(t)\| = 1, t \in [a, b]$
 - Any regular curve can be parameterized by arc length
 - For arc length parameterized curves:
 - $T(s) \coloneqq \mathbf{p}'(s)$ Tangent vector $K(s) \coloneqq \mathbf{p}''(s)$ Curvature vector $\kappa(s) \coloneqq \|\mathbf{p}''(s)\|$ Curvature (scalar)

Parametric Surfaces

Tensor product surfaces

- Example: Bezier surfaces
 - Surface lies in convex hull of control points
 - Surface interpolates the four corner control points
 - Boundary curves are Bezier curves defined only by control points on the boundary

Other: B-Spline patches, NURBS, etc...

Parametric Curves and Surfaces

- Advantages
 - Easy to generate points on the curve/surface
 - Separates x/y/z components

- Disadvantages
 - Hard to determine inside/outside
 - Hard to determine if a point is on the curve/surface

Implicit Curves and Surfaces

Implicit Curves and Surfaces

Implicit Curves and Surfaces Examples

Implicit circle and sphere

$$f: R^{2} \to R \qquad g: R^{3} \to R$$

$$K = \{ \mathbf{p} \in R^{2} : f(\mathbf{p}) = 0 \} \qquad K = \{ \mathbf{p} \in R^{3} : g(\mathbf{p}) = 0 \}$$

$$f(x, y) = x^{2} + y^{2} - r^{2} \qquad g(x, y, z) = x^{2} + y^{2} + z^{2} - r^{2}$$

Implicit Curves and Surfaces Definition

• Definition $g: \mathbb{R}^3 \to \mathbb{R}$ $K = g^{-1}(0) = \{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0\}$

Space partitioning

 $\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) < 0\} \text{ Inside}$ $\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0\} \text{ Curve/Surface}$ $\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) > 0\} \text{ Outside}$

Implicit Curves and Surfaces Gradient

The normal vector to the surface is given by the gradient of the (scalar) implicit function

$$\nabla g(x,y,z) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)^{\mathrm{T}}$$

Example

$$g(x,y,z) = x^{2} + y^{2} + z^{2} - r^{2}$$

 $\nabla g(x,y,z) = (2x,2y,2z)^{T}$

Implicit Curves and Surfaces

Smooth set operations

Standard operations: union and intersection

$$\bigcup_{i} g_{i}(\mathbf{p}) = \min g_{i}(\mathbf{p})$$
$$\bigcap_{i} g_{i}(\mathbf{p}) = \max g_{i}(\mathbf{p})$$

- In many cases, smooth blending is desired
 - Pasko and Savchenko [1994]

$$g \cup f = \frac{1}{1+\alpha} \left(g + f - \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$
$$g \cap f = \frac{1}{1+\alpha} \left(g + f + \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$

Implicit Curves and Surfaces

Smooth set operations

• For $\alpha = 1$, this is equivalent to min and max

$$\lim_{\alpha \to 1} g \cup f = \frac{1}{2} \left(g + f - \sqrt{(g - f)^2} \right) = \frac{g + f}{2} - \frac{|g - f|}{2} = \min(g, f)$$
$$\lim_{\alpha \to 1} g \cap f = \frac{1}{2} \left(g + f + \sqrt{(g - f)^2} \right) = \frac{g + f}{2} + \frac{|g - f|}{2} = \max(g, f)$$

Implicit Curves and Surfaces Blobs

- Suggested by Blinn [1982]
 - Defined implicitly by a potential function around a point \mathbf{p}_i : $g_i(\mathbf{p}) = a_i e^{-b_i \|\mathbf{p} \mathbf{p}_i\|^2}$
 - Set operations by simple addition/subtraction

Implicit Curves and Surfaces

- Advantages
 - Easy to determine inside/outside
 - Easy to determine if a point is on the curve/surface

- Disadvantages
 - Hard to generate points on the curve/surface
 - Does not lend itself to (real-time) rendering

Polygonal Meshes

Polygonal Meshes

- Boundary representations of objects
 - Surfaces, polyhedrons, triangles, quadrilaterals

How are these objects stored?

Geometric graph

- A Graph is a pair G=(V,E)
 - V is a nonempty set of n distinct vertices
 - $\mathbf{p}_0, \, \mathbf{p}_1, \, \dots, \, \mathbf{p}_{n-1}$
 - E is a set of edges (p_i, p_k)
- If P is a (discrete) subset of \mathbb{R}^d with $d \ge 2$, then G=(V,E) is a *geometric graph*
- The *degree* or *valence* of a vertex describes the number of edges incident to this vertex

Edges

- Two edges are neighbors if they share a common vertex
- Edges are generally not oriented, and are noted as (p_i, p_k)
- Halfedges are edges with added orientation
- An edge is comprised of two halfedges

Polygon

• A geometric graph Q=(V,E) with V={ $\mathbf{p}_0, \mathbf{p}_1, ..., \mathbf{p}_{n-1}$ } $\subset \mathbb{R}^d$ with $d \ge 2$ and E={($\mathbf{p}_0, \mathbf{p}_1$),($\mathbf{p}_1, \mathbf{p}_2$),...,($\mathbf{p}_{n-2}, \mathbf{p}_{n-1}$)} is a *polygon*

- A polygon is
 - Planar, if all vertices lie on a plane
 - Closed, if $\mathbf{p}_0 = \mathbf{p}_{n-1}$
 - Simple, if the polygon does not self-intersect

Polygonal mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh if:
 - The intersection of enclosed regions of any two polygons in M is empty
 - The intersection of two polygons in M is either empty, a vertex v∈V or an edge e∈E

Every edge belongs to at least one polygon

Polygonal mesh

- (Continued) The set of all edges that belong to only one polygon is termed the *boundary* of the polygonal mesh, and is either empty or forms closed loops
- If the set of edges that belong to only one polygon is empty, then the polygonal mesh is *closed*
- The set of all vertices and edges in a polygonal mesh form a graph

Polyhedron

- A polygonal mesh is a polyhedron if
 - Each edge is part of two polygons (it is closed)
 - Every vertex v \in V is part of finite, cyclic ordered set of polygons $\{Q_i\}$
 - The polygons incident to a vertex v can be ordered, such that Q_i and Q_i share an edge incident to v

 The union of all polygons forms a single connected component

- A polygonal mesh is a 2-manifold if It is everywhere locally homeomorphic to a (half) Euclidean 2-ball (a disk)
 - A coffee cup is homeomorphic to a torus
- Examples for a non-manifold vertex and a non-manifold edge

Polyhedron

- The union of all polygonal areas is the *surface* of the polyhedron
- The polygonal areas of a polyhedron are also known as *faces*
- Every polyhedron partitions space into two areas; inside and outside the polyhedron

Orientation

- Every face of a polygonal mesh is orientable
 - by defining "clockwise" (as opposed to "counterclockwise"). Two possible orientations
 - Defines the sign of the surface normal
- Two neighboring facets
 are equally oriented, if the edge directions of the shared edge (induced by the face orientations) are opposing

Orientability

- A polygonal mesh is orientable, if the incident faces to every edge can be equally oriented
 - If the faces are equally oriented for every edge, the mesh is *oriented*

Notes

- Every non-orientable closed mesh embedded in R³ intersects itself
- The surface of a polyhedron is always orientable

Relation between #vertices, #edges and #faces of a polygonal mesh

Example:

v = #vertices
e = #edges
f = #faces

Theorem (Euler): The sum

 $\chi(\mathsf{M}) = \mathsf{v} - \mathsf{e} + \mathsf{f}$

is constant for a given topology, no matter which mesh we choose

If M has one boundary loop:

$$\chi(M) = v - e + f = 1$$

• If M is homeomorphic to a sphere: $\chi(M) = v - e + f = 2$

Usage

- Let's count the edges and faces in a closed triangle mesh:
 - Ratio of edges to faces: e = 3/2 f
 - each edge belongs to exactly 2 triangles
 - each triangle has exactly 3 edges
 - Ratio of vertices to faces: f ~ 2v
 - 2 = v e + f = v 3/2 f + f
 - 2 v = -f / 2
 - Ratio of edges to vertices: e ~ 3v
 - Average degree of a vertex: 6
 - 2 vertices incident on each edge

Euler-Poincaré Formula Genus

Theorem: if a polyhedron M is homeomorphic to a sphere with g handles ("holes") then

$$\chi(M) = v - e + f = 2(1 - g)$$

 g is called the genus of M
 handle
 This is not a handle, it's a boundary loop
 Andrew Nealen, Rutgers, 201

Example: simple torus

$$v-e+f=2(1-g)$$

 $8-16+8=2(1-1)$

Generalization

- Theorem: Let
 - v # vertices
 - e # edges
 - f # faces
 - c # connected components
 - h # boundary loops
 - g # handles (the genus) then:

$$v - e + f - h = 2 (c - g)$$

Indexed Face Set

Vertex list (Coordinate3)				Face list (IndexedFaceSet)					
0	0.0	0.0	0.0	0	0	1	2	3	
1	1.0	0.0	0.0	1	0	1	5	4	
2	1.0	1.0	0.0	2	1	2	6	5	
3	0.0	1.0	0.0	3	2	3	7	6	
4	0.0	0.0	1.0	4	3	0	4	7	
5	1.0	0.0	1.0	5	4	5	6	7	
6	1.0	1.0	1.0						
7	0.0	1.0	1.0						

Space requirements

Coordinates/attributes

3x16+k bits/vertex

Connectivity

3xlog₂(V) bits/triangle

- When uncompressed, connectivity dominates
 - Reminder: f = 2v... so after 256 vertices

Indexed Face Set – Problems

- Information about neighbors is not explicit
 - Finding neighboring vertices/edges/faces etc. costs O(v) time!
 - Local mesh modifications cost O(v)

Breadth-first search costs O(k*v) where k = # found vertices

Neighborhood relations [Weiler 1985]

All possible neighborhood relationships:

EV

EE

EF

FV

FE

FF

1/18

- Vertex – Vertex VV 1.
- Vertex – Edge VE 2.
- 3. Vertex – Face VF
- Edge Vertex 4.
- Edge Edge 5.
- Edge – Face 6.
- 7. Face – Vertex
- Face Edge 8
- 9. Face – Face

0.0

1.0

1.0

0.0

0.0

1.0

1.0

0.0

coord

0.0

0.0

1.0

1.0

0.0

0.0

1.0

1.0

Half-edge data structure

he

0

1

2

3

4

9 13

16

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

v

0

1

2

3

4

5

6

7

ſ	_
I	e
0	e0
1	e8
2	e4
3	e16
4	e12
5	e20

Half-Edgelist

he	vstart	next	prev	opp	he	vstart	next	prev	opp
0	0	1	3	6	12	2	13	15	10
1	1	2	0	11	13	6	14	12	22
2	2	3	1	15	14	7	15	13	19
3	3	0	2	18	15	3	12	14	2
4	4	5	7	20	16	7	17	19	21
5	5	6	4	8	17	4	18	16	7
6	1	7	5	0	18	0	19	17	3
7	0	4	6	17	19	3	16	18	14
8	1	9	11	5	20	5	21	23	4
9	5	10	8	23	21	4	22	20	16
10	6	11	9	12	22	7	23	21	13
11	2	8	10	1	23	6	20	22	9

Andrew Nealen, Rutgers, 2011

Half-edge data structure

 Each atomic insertion into the data structure (i.e., vertex, edge or face insertion) requires constant space and time

Half-edge data structure

- All basic queries take constant O(1) time!
 - In particular, the query time is independent of the model size

Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
   q.append(he.opposite);
while (! q.isEmpty()) {
  he=q.first();
  // do work
  if (he.next.opposite != null)
    q.append(he.next.opposite);
  if (he.next.next.opposite != null)
    q.append(he.next.next.opposite)
}
```


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
   q.append(he.opposite);
while (! q.isEmpty()) {
  he=q.first();
  // do work
  if (he.next.opposite != null)
    q.append(he.next.opposite);
  if (he.next.next.opposite != null)
    q.append(he.next.next.opposite)
}
```


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
   q.append(he.opposite);
while (! q.isEmpty()) {
  he=q.first();
  // do work
  if (he.next.opposite != null)
    q.append(he.next.opposite);
  if (he.next.next.opposite != null)
    q.append(he.next.next.opposite)
}
```


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
   q.append(he.opposite);
while (! q.isEmpty()) {
  he=q.first();
  // do work
  if (he.next.opposite != null)
    q.append(he.next.opposite);
  if (he.next.next.opposite != null)
    q.append(he.next.next.opposite)
}
```


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
   q.append(he.opposite);
while (! q.isEmpty()) {
  he=q.first();
  // do work
  if (he.next.opposite != null)
    q.append(he.next.opposite);
  if (he.next.next.opposite != null)
    q.append(he.next.next.opposite)
}
```


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges
HalfEdge he;
q.append(he);
if (he.opposite != null)
   q.append(he.opposite);
while (! q.isEmpty()) {
  he=q.first();
  // do work
  if (he.next.opposite != null)
    q.append(he.next.opposite);
  if (he.next.next.opposite != null)
    q.append(he.next.next.opposite)
}
```


Criteria for design

- Maximal number of vertices (i.e., how large are the models?)
- Available memory size
- Required operations
 - Mesh updates (edge collapse, edge flip)
 - Neighborhood queries
- Distribution of operations (what are the most common/frequent ones?)
- How can we compare different data structures?