CS 523: Computer Graphics, Spring 2011 Shape Modeling

Shape Reconstruction

Course Topics

- Shape acquisition
- Scanning/imaging
- Reconstruction

Data Acquisition Pipeline

Scanning:
results in
range images $\quad \square$

Registration: bring all range images to one coordinate system

```
Postprocess:
- Topological and
geometric
filtering
- Remeshing
- Compression
```


Data Acquisition Pipeline

Data Acquisition Pipeline

Data Acquisition Pipeline

Scanning:
results in
range images \Rightarrow

Registration: bring all range images to one coordinate system

Postprocess:

- Topological and geometric filtering
- Remeshing
- Compression

Data Acquisition Pipeline

Touch probes

- Physical contact with the object
- Manual or computer-guided
- Advantages:
- Can be very precise

- Can scan any solid surface
- Disadvantages:
- Slow, small scale
- Can't use on fragile objects

Optical scanning

- Infer the geometry from light reflectance
- Advantages:
- Less invasive than touch
- Fast, large scale possible

- Disadvantages:
- Difficulty with transparent and shiny objects

Optical scanning - active lighting

Time of flight laser

- Laser rangefinder (lidar)
- Measures the time it takes the laser beam to hit the object and come back
- Scans one point at a time; mirrors used to change beam direction

Optical scanning - active lighting

Time of flight laser

- Accommodates large range - up to several miles (suitable for buildings, rocks)
- Lower accuracy (light travels really fast)

Optical scanning - active lighting

Triangulation laser

- Laser beam and camera
- Laser dot is photographed
- The location of the dot in the
 image allows triangulation - so we get the distance to the object

Optical scanning - active lighting

Triangulation laser

- Laser beam and camera
- Laser dot is photographed
- The location of the dot in the
 image allows triangulation - so we get the distance to the object

Optical scanning - active lighting

Triangulation laser

- Laser beam and camera
- Laser dot is photographed
- The location of the dot in the
 image allows triangulation - so we get the distance to the object

Optical scanning - active lighting

Triangulation laser

- Speed-up: instead of a single dot, a whole stripe is swiped across the object

- Very precise (tens of microns)
- Small distances (meters)

Optical scanning - active lighting

 Structured light- Pattern of visible light is projected onto the object
- The distortion of the pattern, recorded by the camera, provides geometric information
- Very fast - 2D pattern at once, not single dots/lines
- Even in real time
- Complex distance calculation, prone to noise

Optical scanning - passive

Stereo

- No need for special lighting/radiation
- Two (or more) cameras
- Feature matching and triangulation

Imaging

- Ultrasound, CT, MRI
- Discrete volume of density data
- First need to segment the desired object (contouring)

Surface reconstruction

- How to create a single mesh?
- Surface topology?
- Smoothness?
- How to connect the dots?

Continuous reconstruction 2D Example

- Given a set of scattered (scalar) data points f_{i} at positions \mathbf{p}_{i} in a 2D parameter domain
- The principles are applicable to arbitrary parameter domain dimensions

Continuous reconstruction
 2D Example

- The reconstruction operates on a single dimension (i.e. the z-component) of the parametric (hyper) surface
- Goal: approximate function f from f_{i}, \mathbf{p}_{i}

Radial Basis Functions

1D Example

- Independent of parameter domain dimension
- Function f represented as
- Weighted sum of radial functions r
- In the parameter domain positions \mathbf{p}_{i}

$$
\mathrm{f}(\mathbf{x})=\sum_{i} w_{i} \mathrm{r}\left(\left\|\mathbf{p}_{i}-\mathbf{x}\right\|\right)
$$

Radial Basis Functions

Computing the coefficients

- Set

$$
f_{j}=\sum_{i} w_{i} \mathrm{r}\left(\left\|t_{i}-t_{j}\right\|\right)
$$

to compute the weights/coefficients w_{i}

- Linear system of equations (per dimension)

$$
\left(\begin{array}{cccc}
\mathrm{r}(0) & \mathrm{r}\left(\left\|t_{0}-t_{1}\right\|\right) & \mathrm{r}\left(\left\|t_{0}-t_{2}\right\|\right) & \cdots \\
\mathrm{r}\left(\left\|t_{1}-t_{0}\right\|\right) & \mathrm{r}(0) & \mathrm{r}\left(\left\|t_{1}-t_{2}\right\|\right) & \\
\mathrm{r}\left(\left\|t_{2}-t_{0}\right\|\right) & \mathrm{r}\left(\left\|t_{2}-t_{1}\right\|\right) & \mathrm{r}(0) & \\
\vdots & & & \ddots
\end{array}\right)\left(\begin{array}{c}
w_{0} \\
w_{1} \\
w_{2} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots
\end{array}\right)
$$

Global Approximation

- Given $\mathbf{p}_{i} \in \mathrm{R}^{d}, f_{i} \in \mathrm{R}, i=0, \ldots, n$
- \mathbf{p}_{i} - parameter domain positions
- f_{i} - function values
- Compute polynomial curve $\mathrm{f}\left(\mathbf{p}_{i}\right) \approx f_{i}, i=0, \ldots, n$

Least Squares Approximation

- Error functional

$$
J_{L S}=\sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-f_{i}\right\|^{2}
$$

- Polynomial basis of degree m in d dimensions

$$
\begin{gathered}
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{c}=\mathbf{b}(\mathbf{x}) \cdot \mathbf{c} \\
\mathbf{b}(\mathbf{x})=\left[b_{1}(\mathbf{x}), \ldots, b_{k}(\mathbf{x})\right]^{T} \quad \mathbf{c}=\left[c_{1}, \ldots, c_{k}\right]^{T} \\
\mathbf{b}(\mathbf{x})=\left[1, x, y, x^{2}, x y, y^{2}\right]^{T}
\end{gathered}
$$

- Previous 1D quadratic Example $f(\mathbf{x})=c_{1}+c_{2} x+c_{3} x^{2}$

Least Squares Approximation

- Solve for \mathbf{c} by taking (partial) derivatives of $J_{L S}$ w.r.t. the unknowns and setting to zero
$\partial J_{L S} / \partial c_{1}=0:$
$\sum_{i} 2 b_{1}\left(\mathbf{x}_{i}\right)\left[\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right]=0$
$\partial J_{L S} / \partial c_{2}=0:$
$\sum_{i} 2 b_{2}\left(\mathbf{x}_{i}\right)\left[\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right]=0$
$\partial J_{L S} / \partial c_{k}=0:$
$\sum_{i} 2 b_{k}\left(\mathbf{x}_{i}\right)\left[\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right]=0$.

Least Squares Approximation

- In matrix-vector notation

$$
\begin{gathered}
\sum_{i} 2 \mathbf{b}\left(\mathbf{x}_{i}\right)\left[\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right]= \\
2 \sum_{i}\left[\mathbf{b}\left(\mathbf{x}_{i}\right) \mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-\mathbf{b}\left(\mathbf{x}_{i}\right) f_{i}\right]=\mathbf{0 .} \\
\sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) \mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}=\sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) f_{i}
\end{gathered}
$$

- Solve for $\mathbf{c}=\left[\sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) \mathbf{b}\left(\mathbf{x}_{i}\right)^{T}\right]^{-1} \sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) f_{i}$

Least Squares Approximation 2D quadratic example

- Error functional and partial derivatives

$$
f(\mathbf{x})=a+b_{u} u+b_{v} v+c_{u u} u^{2}+c_{u v} u v+c_{v v} v^{2}
$$

$\min _{(a, \mathbf{b}, \mathbf{C})} \sum_{i}\left(\mathrm{f}\left(u_{i}, v_{i}\right)-f_{i}\right)^{2}=\min _{(a, \mathbf{b}, \mathbf{C})} \sum_{i}\left(a+b_{u} u_{i}+b_{v} v_{i}+c_{u u} u_{i}^{2}+c_{u v} u_{i} v_{i}+c_{v v} v_{i}^{2}-f_{i}\right)^{2}$

$$
\partial \sum_{i}\left(\mathrm{f}\left(u_{i}, v_{i}\right)-f_{i}\right)^{2} / \partial a=\sum_{i} 2\left(a+b_{u} u_{i}+b_{v} v_{i}+c_{u u} u_{i}^{2}+c_{u v} u_{i} v_{i}+c_{v v} v_{i}^{2}-f_{i}\right)=0
$$

$$
\partial \sum_{i}\left(\mathrm{f}\left(u_{i}, v_{i}\right)-f_{i}\right)^{2} / \partial c_{v v}=\sum_{i} 2 v_{i}^{2}\left(a+b_{u} u_{i}+b_{v} v_{i}+c_{u u} u_{i}^{2}+c_{u v} u_{i} v_{i}+c_{v v} v_{i}^{2}-f_{i}\right)=0
$$

Least Squares Approximation 2D quadratic example

- Linear system of equations
$\sum_{i}\left(\begin{array}{cccccc}1 & u_{i} & v_{i} & u_{i}^{2} & u_{i} v_{i} & v_{i}^{2} \\ u_{i} & u_{i}^{2} & u_{i} v_{i} & u_{i}^{3} & u_{i}^{2} v_{i} & u_{i} v_{i}^{2} \\ v_{i} & u_{i} v_{i} & v_{i}^{2} & u_{i}^{2} v_{i} & u_{i} v_{i}^{2} & v_{i}^{3} \\ u_{i}^{2} & u_{i}^{3} & u_{i}^{2} v_{i} & u_{i}^{4} & u_{i}^{3} v_{i} & v_{i}^{2} u_{i}^{2} \\ u_{i} v_{i} & u_{i}^{2} v_{i} & u_{i} v_{i}^{2} & u_{i}^{3} v_{i} & u_{i}^{2} v_{i}^{2} & u_{i} v_{i}^{3} \\ v_{i}^{2} & v_{i}^{2} u_{i} & v_{i}^{3} & v_{i}^{2} u_{i}^{2} & u_{i} v_{i}^{3} & v_{i}^{4}\end{array}\right)\left(\begin{array}{c}a \\ b_{u} \\ b_{v} \\ c_{u u} \\ c_{u v} \\ c_{v v}\end{array}\right)=\sum_{i} f_{i}\left(\begin{array}{c}1 \\ u_{i} \\ v_{i} \\ u_{i}^{2} \\ u_{i} v_{i} \\ v_{i}^{2}\end{array}\right)$

Least Squares Approximation

Results

Least Squares Approximation

Normal equations

Method of Normal Equations. For a different but also very common notation, note that the solution for \mathbf{c} solves the following (generally over-constrained) $\mathrm{LSE}(\mathbf{B c}=\mathbf{f})$ in the leastsquares sense

$$
\left[\begin{array}{c}
\mathbf{b}^{T}\left(\mathbf{x}_{1}\right) \\
\vdots \\
\mathbf{b}^{T}\left(\mathbf{x}_{N}\right)
\end{array}\right] \mathbf{c}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{N}
\end{array}\right],
$$

using the method of normal equations

$$
\begin{aligned}
\mathbf{B}^{T} \mathbf{B} \mathbf{c} & =\mathbf{B}^{T} \mathbf{f} \\
\mathbf{c} & =\left(\mathbf{B}^{T} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{f}
\end{aligned}
$$

Weighted Least Squares

- Principle: local approximation at $\overline{\mathbf{x}}$ by weighting the squared errors based on proximity in the parameter domain

$$
\min _{\mathrm{f}_{\mathbf{x}} \in \Pi_{k}^{d}} \sum_{i=0}^{n}\left\|\mathrm{f}\left(\mathbf{p}_{i}\right)-f_{i}\right\|^{2} \theta\left(\left\|\mathbf{p}_{i}-\overline{\mathbf{x}}\right\|\right)
$$

Weighted Least Squares
 Weighting functions

- Gaussian

$$
\theta(d)=e^{-\frac{d^{2}}{h^{2}}}
$$

- h is a smoothing parameter
- Wendland function

$$
\theta(d)=(1-d / h)^{4}(4 d / h+1)
$$

- Defined in $[0, h]$ and

$$
\theta(0)=1, \theta(h)=0, \theta^{\prime}(h)=0 \text { and } \theta^{\prime \prime}(h)
$$

- Singular function

$$
\theta(d)=\frac{1}{d^{2}+\varepsilon^{2}}
$$

- For small ε, weights large near $d=0$ (interpolation)

Moving Least Squares
 Parametric 1D example

- Principle: "construct" a global function from infinitely many locally weighted functions

$$
\mathrm{f}(\mathbf{x})=\mathrm{f}_{\overline{\mathrm{x}}}(\mathbf{x}), \min _{\mathrm{f}_{\mathbf{x}} \in \Pi_{k}^{n}} \sum_{i=0}^{n}\left\|\mathrm{f}\left(\mathbf{p}_{i}\right)-f_{i}\right\|^{2} \theta\left(\left\|\mathbf{p}_{i}-\overline{\mathbf{x}}\right\|\right)
$$

4

Moving Least Squares
 Parametric 1D example

- The infinite set

$$
\mathrm{f}(\mathbf{x})=\mathrm{f}_{\overline{\mathbf{x}}}(\mathbf{x}), \min _{\mathrm{f}_{\mathbf{x}} \in \Gamma_{k}^{2}} \sum_{i=0}^{n}\left\|\mathrm{f}\left(\mathbf{p}_{i}\right)-f_{i}\right\|^{2} \theta\left(\left\|\mathbf{p}_{i}-\overline{\mathbf{x}}\right\|\right)
$$

is continuously differentiable if and only if θ is continuously differentiable

LS, MLS and Weight Functions

Linear polynomial fit

- Global least squares

- MLS with (near) $\quad \theta(d)=\frac{1}{d^{2}+\varepsilon^{2}}$ singular weight function

- MLS with approximating weight function

$$
\theta(d)=e^{-\frac{d^{2}}{r^{2}}}
$$

Implicit Surface Reconstruction

Distance Field Reconstruction
 2D example

- Idea: construct a distance field on the points
- Implicit function

$$
\mathrm{f}\left(\mathbf{p}_{i}\right)=0
$$

for the points \mathbf{p}_{i}

- Trivial solution $f=0$
- Requires additional constraints

0

Distance Field Reconstruction

[Hoppe et al. 1992]

- Linear distance function per point
- Direction is defined by surface normal

$$
\mathrm{f}_{i}(\mathbf{x})=\mathbf{n}_{i} \cdot\left(\mathbf{x}-\mathbf{p}_{i}\right)
$$

- Distance in space is the minimum of all local distance functions $\mathrm{f}(\mathbf{x})=\operatorname{minf}_{i}(\mathbf{x})=\min _{i} \mathbf{n}_{i} \cdot\left(\mathbf{x}-\mathbf{p}_{i}\right)$

Distance Field Reconstruction

 Inside + outside point constraints- Additional data to define inside and outside
- Basic idea [Turk and O’Brien 1999]
- Insert additional value constraints manually
- These constraints can be added as soft constraints with low(er) weight

Distance Field Reconstruction

Inside + outside point constraints

- This information can also be obtained from surface normals $f\left(\mathbf{p}_{i}+\alpha \mathbf{n}_{i}\right)=\alpha$
- Some acquisition devices provide normals
- If not, they must be locally approximated

Distance Field Reconstruction

 Inside + outside point constraints- This information can also be obtained from surface normals $f\left(\mathbf{p}_{i}+\alpha \mathbf{n}_{i}\right)=\alpha$
- Some acquisition devices provide normals
- If not, they must be locally approximated

Distance Field Reconstruction

 Radial basis functions (RBFs)- Similar to parametric case
- Given points and normals $\mathbf{p}_{i}, \mathbf{n}_{i}$ construct a function with

$$
\mathrm{f}\left(\mathbf{p}_{i}\right)=0, \quad \mathrm{f}\left(\mathbf{p}_{i}+\alpha \mathbf{n}_{i}\right)=\alpha
$$

- Possible solution: Gaussian RBFs

Distance Field Reconstruction

Moving least squares (MLS)

- Given points and normals $\mathbf{p}_{i}, \mathbf{n}_{i}$ construct a function with

$$
\mathrm{f}\left(\mathbf{p}_{i}\right)=0, \quad \mathrm{f}\left(\mathbf{p}_{i}+\alpha \mathbf{n}_{i}\right)=\alpha
$$

using the moving least squares technique

$$
\mathrm{f}(\mathbf{x})=\mathrm{f}_{\overline{\mathbf{x}}}(\mathbf{x}), \quad \min _{\mathrm{f}_{\mathbf{x}} \in \Pi_{k}^{d}} \sum_{i=0}^{n}\left\|\mathrm{f}\left(\mathbf{p}_{i}\right)-f_{i}\right\|^{2} \theta\left(\left\|\mathbf{p}_{i}-\overline{\mathbf{x}}\right\|\right)
$$

MLS Distance Field

1D example

- One dimensional Implicit function
-f(x)

$\begin{array}{ll}\begin{array}{l}\mathbf{p}_{\mathrm{i}} \\ \text { - Constraint }\end{array} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad-\quad \text { Approximation } \\ & -\quad \mathrm{f}(\mathbf{x}) \quad \text { Weighting }\end{array}$

MLS Distance Field

1D slice of a 2D height field

MLS Distance Field
 1D example

- Adding inside + outside constraints

- $\mathbf{p}_{\mathrm{i}} \quad \longrightarrow \mathbf{n}_{\mathrm{i}} \quad \longrightarrow$ Approximation
- Constraint
_ $\mathrm{f}(\mathbf{x}) \quad=$ Weighting

MLS Distance Field

1D example

- Linear polynomial fit (uniform weights)
-f(x)
|
$\begin{array}{ll}\begin{array}{l}\mathbf{p}_{\mathrm{i}} \\ \text { - Constraint }\end{array} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad-\quad \text { Approximation } \\ \text { — } & \mathrm{f}(\mathbf{x}) \quad \text { Weighting }\end{array}$

MLS Distance Field
 1D example

- Linear polynomial fit (Gaussian weights)
-f(x)

- $\mathbf{p}_{\mathrm{i}} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad \longrightarrow$ Approximation
- Constraint
—— $\mathrm{f}(\mathbf{x})$
Weighting

MLS Distance Field
 1D example

- Linear polynomial fit (Gaussian weights)
-f(x)

$\mathbf{p}_{\mathrm{i}} \longrightarrow \mathbf{n}_{\mathrm{i}}$	\longrightarrow	Approximation
Constraint		

MLS Distance Field

1D example

- Quadratic polynomial fit (Gaussian weights)
-f(x)

- $\mathbf{p}_{\mathrm{i}} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad \longrightarrow$ Approximation
- Constraint
—— $\mathrm{f}(\mathbf{x})$
Weighting

MLS Distance Field

1D example

- Constant polynomial fit (Gaussian weights)
-f(x)

$\begin{array}{ll}\text { - } \mathbf{p}_{\mathrm{i}} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad \longrightarrow \\ \text { - Constraint }\end{array} \quad-\mathrm{f}(\mathbf{x}) \quad=$ Weighting

MLS Distance Field
 1D example

- Constant polynomial fit (Gaussian weights)
-f(x)

$\begin{aligned} & \mathbf{p}_{\mathrm{i}} \\ & \text { - Constraint }\end{aligned} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad \begin{aligned} & \text { Approximation } \\ & \text { — }\end{aligned} \quad \mathrm{f}(\mathbf{x}) \quad$ Weighting

MLS Distance Field

1D example

- MLS approximation results
-f(x)

$\begin{array}{ll}\begin{array}{l}\mathbf{p}_{\mathrm{i}} \\ \text { - Constraint }\end{array} \longrightarrow \mathbf{n}_{\mathrm{i}} \quad \longrightarrow \quad \text { Approximation } \\ & -\quad \mathrm{f}(\mathbf{x}) \quad \text { Weighting }\end{array}$

MLS Distance Field
 1D example

- Discrete evaluation with marching cubes (3D) -f(x)

- $\mathbf{p}_{\mathrm{i}} \longrightarrow \mathbf{n}_{\mathrm{i}}$
_- Approximation
——f(x)
_ Weighting

MLS Distance Field

1D example

- Discrete evaluation with marching cubes (3D)
-f(x)

MLS Distance Field

1D example

- Discrete evaluation with marching cubes (3D)

-f(\mathbf{x}) Surface points

MLS Distance Field 2D Illustration

MLS Distance Field

Extensions

- Point constraints vs. true normal constraints

- Details: Shen, C., O'Brien, J. F., Shewchuk J. R., "Interpolating and Approximating Implicit Surfaces from Polygon Soup." Proceedings of ACM SIGGRAPH 2004, Los Angeles, California, August 8-12.

Tessellation of implicit surfaces

Tessellation

- Want to approximate an implicit surface with a mesh
- For rendering, further processing
- Can't explicitly compute all the roots
- Infinite amount (the whole surface)
- The expression of the implicit function may be complicated
- Solution: find approximate roots by trapping the implicit surface in a grid (lattice)

- $\mathrm{f}(\mathbf{p})<0$

Tessellation 2D grid

- 16 different configurations in 2D
- 4 equivalence classes (up to rotational and reflection symmetry + complement)

Tessellation 2D grid

- 16 different configurations in 2D
- 4 equivalence classes (up to rotational and reflection symmetry + complement)

case 2

case 3

case 4

Tessellation 2D grid, consistency

- Case 4 is ambiguious:

- Always pick consistently to avoid problems with the resulting mesh

Tessellation 2D triangle grid

- No ambiguity if we have triangles instead of squares
- However, it is still unknown what the true surface is!

Tessellation 3D - Marching Cubes

Tessellation

3D - Marching Cubes

- Marching Cubes (Lorensen and Cline 1987)

1. Load 4 layers of the grid into memory
2. Create a cube whose vertices lie on the two middle layers
3. Classify the vertices of
 the cube according to the implicit function (inside, outside or on the surface)

Tessellation 3D - Marching Cubes

4. Compute case index. We have $2^{8}=256$ cases ($0 / 1$ for each of the eight vertices) - can store as 8 bit (1 byte) index.

Tessellation

3D - configurations

- We have 14 equivalence classes (by rotation, reflection and complement)

Tessellation 3D - Marching Cubes

5. Using the case index, retrieve the connectivity in the look-up table

- Example: the entry for index 33 in the look-up table indicates that the cut edges are $\mathrm{e}_{1} ; \mathrm{e}_{4} ; \mathrm{e}_{5} ; \mathrm{e}_{6} ; \mathrm{e}_{9}$ and $\mathrm{e}_{10} ;$ the output triangles are $\left(\mathrm{e}_{1} ; \mathrm{e}_{9} ; \mathrm{e}_{4}\right)$ and $\left(\mathrm{e}_{5} ; \mathrm{e}_{10} ; \mathrm{e}_{6}\right)$.

Tessellation 3D - Marching Cubes

6. Compute the position of the cut vertices by linear interpolation:

$$
\begin{aligned}
& \mathbf{v}_{s}=\alpha \mathbf{v}_{a}+(1-\alpha) \mathbf{v}_{b} \\
& \alpha=\frac{\mathrm{f}\left(\mathbf{v}_{b}\right)}{\mathrm{f}\left(\mathbf{v}_{b}\right)-\mathrm{f}\left(\mathbf{v}_{a}\right)}
\end{aligned}
$$

7. Compute the vertex normals
8. Move to the next cube

Tessellation

3D - configurations, consistency

- Have to make consistent choices for neighboring cubes
- Prevent " holes" in the triangulation

Tessellation

Grid-Snapping

- Problems with short triangle edges
- When the surface intersects the cube close to a corner, the resulting tiny triangle doesn't contribute much area to the mesh
- When the intersection is close to an edge of the cube, we get skinny triangles (bad aspect ratio)
- Triangles with short edges waste resources but don't contribute to the surface mesh representation

Tessellation

Grid-Snapping

- Solution: threshold the distances between the created vertices and the cube corners
- When the distance is smaller than $\mathrm{d}_{\text {snap }}$ we snap the vertex to the cube corner
- If more than one vertex of a triangle is snapped to the same point, we discard that triangle altogether

Tessellation

Grid-Snapping

- With Grid-Snapping one can obtain significant reduction of space consumption

Parameter	0	0,1	0,2	0,3	0,4	0,46	0,49 5
Vertices	1446	1398	1254	1182	1074	830	830
Reduction	0	3,3	13,3	18,3	25,7	42,6	42,6

Tessellation

Sharp corners and sharp edges

- (Kobbelt et al. 2001):
- Evaluate the normals
- When they significantly differ, create additional vertex

