
CS 523: Computer Graphics, Spring 2011

Shape Modeling

Shape Reconstruction
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Course Topics

� Shape acquisition

� Scanning/imaging

� Reconstruction
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Data Acquisition
Pipeline

Scanning:

results in 

range images

Registration:

bring all range 

images to one 

coordinate 

system

Stitching/reconstruction:

Integration of scans into 

a single mesh

Postprocess:
• Topological and 

geometric 

filtering

• Remeshing

• Compression
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Touch probes

� Physical contact with the object

� Manual or computer-guided

� Advantages:

� Can be very precise� Can be very precise

� Can scan any solid surface

� Disadvantages:

� Slow, small scale

� Can’t use on fragile 
objects

Andrew Nealen, Rutgers, 2011 1/25/2011 8



Optical scanning

� Infer the geometry from 

light reflectance 

� Advantages:

� Less invasive than touch� Less invasive than touch

� Fast, large scale possible

� Disadvantages:

� Difficulty with transparent 

and shiny objects
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Optical scanning – active lighting
Time of flight laser

� Laser rangefinder (lidar)

� Measures the time it takes

the laser beam to hit the object

and come back

� Scans one point at a time;

mirrors used to change beam

direction
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Optical scanning – active lighting
Time of flight laser

� Accommodates large range – up to several 

miles (suitable for buildings, rocks) 

� Lower accuracy (light travels really fast)
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Optical scanning – active lighting
Triangulation laser

� Laser beam and camera

� Laser dot is photographed

� The location of the dot in the

image allows triangulation – so we get the image allows triangulation – so we get the 

distance to the object
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Optical scanning – active lighting
Triangulation laser

� Speed-up: instead of a single

dot, a whole stripe is 

swiped across the object

� Very precise (tens of microns)

� Small distances (meters)
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Optical scanning – active lighting
Structured light

� Pattern of visible light is projected onto the object

� The distortion of the pattern, recorded by the 

camera, provides geometric information

� Very fast – 2D pattern at once, not single dots/lines� Very fast – 2D pattern at once, not single dots/lines

� Even in real time

� Complex distance calculation, prone to noise
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Optical scanning – passive
Stereo

� No need for special lighting/radiation

� Two (or more) cameras

� Feature matching and triangulation
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Imaging

� Ultrasound, CT, MRI

� Discrete volume of density data

� First need to segment the desired object (contouring)

Andrew Nealen, Rutgers, 2011 1/25/2011 18



Surface reconstruction

� How to create a single mesh? 

� Surface topology?

� Smoothness?

� How to connect the dots?� How to connect the dots?
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Continuous reconstruction
2D Example

� Given a set of scattered (scalar) data points

at positions      in a 2D parameter domain 

� The principles are applicable to arbitrary 

parameter domain dimensions

if

ip

parameter domain dimensions
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Continuous reconstruction
2D Example

� The reconstruction operates on a single 

dimension (i.e. the z-component) of the 

parametric (hyper) surface

� Goal: approximate function f from f ,p� Goal: approximate function f from 
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Radial Basis Functions
1D Example

� Independent of parameter domain dimension

� Function f represented as

� Weighted sum of radial functions r

� In the parameter domain positions p� In the parameter domain positions pi
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Radial Basis Functions
Computing the coefficients

� Set

to compute the weights/coefficients wi

( )∑ −=
i

jiij ttwf r

to compute the weights/coefficients wi

� Linear system of equations (per dimension)
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Global Approximation

� Given

� pi - parameter domain positions

� fi - function values

� Compute polynomial curve

nifi
d

i ,,0R,,R K=∈∈p

nif ,,0,)(f K=≈p� Compute polynomial curve

Andrew Nealen, Rutgers, 2011 1/25/2011 24

nifii ,,0,)(f K=≈p

2)f( cxbxa ++=x



Least Squares Approximation

� Error functional

� Polynomial basis of degree m in d dimensions� Polynomial basis of degree m in d dimensions

� Previous 1D quadratic Example
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Least Squares Approximation

� Solve for c by taking (partial) derivatives of JLS
w.r.t. the unknowns and setting to zero
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Least Squares Approximation

� In matrix-vector notation

� Solve for 
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Least Squares Approximation
2D quadratic example

� Error functional and partial derivatives

f (x) = a + buu + bvv + cuuu
2 + cuvuv + cvvv

2

min
a,b,C( )

f ui,v i( )− f i( )2∑ = min
a,b ,C( )

a+ buui + bvv i + cuuui
2 + cuvuiv i + cvvv i

2 − f i( )2∑
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Least Squares Approximation
2D quadratic example

� Linear system of equations
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Least Squares Approximation
Results
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Least Squares Approximation
Normal equations
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� Principle: local approximation at  by 

weighting the squared errors based on 

proximity in the parameter domain

x

Weighted Least Squares

( )∑ −−
n

f
2

)f(min xpp θ
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� Gaussian

� h is a smoothing parameter

� Wendland function

Weighted Least Squares
Weighting functions

� Defined in [0,h] and

� Singular function

� For small ε, weights large near d=0 (interpolation)
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Moving Least Squares
Parametric 1D example

� Principle: “construct” a global function from 

infinitely many locally weighted functions

( ) ( ) ( )∑ −−=
n

iii f
2

)f(min,ff xppxx x θ
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Moving Least Squares
Parametric 1D example

� The infinite set

is continuously differentiable if and only if θ is 

( ) ( ) ( )∑
=Π∈

−−=
n

i

iii f
d
k 0

2

f
)f(min,ff xppxx

x

x θ

is continuously differentiable if and only if θ is 

continuously differentiable
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LS, MLS and Weight Functions
Linear polynomial fit

� Global least squares

� MLS with (near) 
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� MLS with (near) 

singular weight function

� MLS with approximating

weight function



Implicit Surface Reconstruction
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Distance Field Reconstruction
2D example

� Idea: construct a distance 

field on the points

� Implicit function 
0f p( ) = 0

for the points pi

� Trivial solution

� Requires additional 

constraints 
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0f p i( ) = 0

f = 0



� Linear distance function

per point 

� Direction is defined by 

surface normal

Distance Field Reconstruction 
[Hoppe et al. 1992]

surface normal

� Distance in space is the 

minimum of all local 

distance functions
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fi x( )= ni ⋅ x −pi( )

f x( )=min
i
fi x( )=min

i
ni ⋅ x −pi( )



Distance Field Reconstruction
Inside + outside point constraints

� Additional data to define 

inside and outside

� Basic idea [Turk and 

O’Brien 1999] − −

−

+

+

+

O’Brien 1999]

� Insert additional value 

constraints manually

� These constraints can be 

added as soft constraints 

with low(er) weight
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Distance Field Reconstruction
Inside + outside point constraints

� This information can also 

be obtained from 

surface normals

+

+

+

+

+ +

f p + αn( ) = α
� Some acquisition 

devices provide 

normals

� If not, they must be 

locally approximated
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� This information can also 

be obtained from 

surface normals

Distance Field Reconstruction
Inside + outside point constraints

f p + αn( ) = α
0 -1

123

α

-α

� Some acquisition 

devices provide 

normals

� If not, they must be 

locally approximated
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Distance Field Reconstruction
Radial basis functions (RBFs)

� Similar to parametric case

� Given points and normals

construct a function with

p i,n i

( ) ( ) αα =+= npp f,0f

� Possible solution: Gaussian RBFs
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Distance Field Reconstruction
Moving least squares (MLS)

� Given points and normals 

construct a function with

p i,n i

( ) ( ) αα =+= iii npp f,0f

using the moving least squares technique
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MLS Distance Field
1D example

� One dimensional Implicit function
-f(x)
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x

pi ni

Constraint

Approximation

f(x) Weighting



MLS Distance Field
1D slice of a 2D height field

y
-f(x)
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MLS Distance Field
1D example

� Adding inside + outside constraints
-f(x)

ε ε
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x

pi ni

Constraint

Approximation

f(x) Weighting

ε



MLS Distance Field
1D example

� Linear polynomial fit (uniform weights)
-f(x)
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MLS Distance Field
1D example

� Linear polynomial fit (Gaussian weights)
-f(x)
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MLS Distance Field
1D example

� Linear polynomial fit (Gaussian weights)
-f(x)

f−)(f p
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x
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Constraint
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MLS Distance Field
1D example

� Quadratic polynomial fit (Gaussian weights)
-f(x)
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MLS Distance Field
1D example

� Constant polynomial fit (Gaussian weights)
-f(x)
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MLS Distance Field
1D example

� Constant polynomial fit (Gaussian weights)
-f(x)
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MLS Distance Field
1D example

� MLS approximation results
-f(x)

Surface points
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MLS Distance Field
1D example

� Discrete evaluation with marching cubes (3D)
-f(x)

+ + +++- - -
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MLS Distance Field
1D example

� Discrete evaluation with marching cubes (3D)
-f(x)

+ +- -

Surface points
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MLS Distance Field
1D example

� Discrete evaluation with marching cubes (3D)
-f(x)

+ +- -

Surface points

linear interpolation
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MLS Distance Field
2D Illustration

y
-f(x)
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MLS Distance Field
Extensions

� Point constraints vs. true normal constraints

� Details: Shen, C., O'Brien, J. F., Shewchuk J. R., "Interpolating and 

Approximating Implicit Surfaces from Polygon Soup." Proceedings of ACM 

SIGGRAPH 2004, Los Angeles, California, August 8-12. 
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Tessellation of implicit surfaces
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Tessellation

� Want to approximate an implicit surface with a mesh

� For rendering, further processing

� Can‘t explicitly compute all the roots

� Infinite amount (the whole surface)

� The expression of the implicit function may be complicated� The expression of the implicit function may be complicated

� Solution: find approximate roots by trapping the implicit 

surface in a grid (lattice)
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Tessellation
2D grid

� 16 different configurations in 2D

� 4 equivalence classes (up to rotational and reflection 

symmetry + complement)
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Tessellation
2D grid
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Tessellation
2D grid, consistency

� Case 4 is ambiguious:

� Always pick consistently to avoid problems with the resulting � Always pick consistently to avoid problems with the resulting 

mesh
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� No ambiguity if we have triangles instead of squares

� However, it is still unknown what the true surface is!

Tessellation
2D triangle grid
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Tessellation
3D – Marching Cubes
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Layer k+1

Layer k



� Marching Cubes (Lorensen and Cline 1987) 

1. Load 4 layers of the grid 
into memory

2. Create a cube whose 
vertices lie on the two 

Tessellation
3D – Marching Cubes

vertices lie on the two 
middle layers

3. Classify the vertices of 
the cube according to the
implicit function (inside, 
outside or on the surface)
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Tessellation
3D – Marching Cubes

4. Compute case index. We have 28= 256 cases (0/1 for each of 

the eight vertices) – can store as 8 bit (1 byte) index.
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Tessellation
3D – configurations

� We have 14 equivalence classes (by rotation, reflection and 

complement)
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Tessellation
3D – Marching Cubes

5. Using the case index, retrieve the connectivity in the look-up 

table

� Example: the entry for index 33 in the look-up table indicates 

that  the cut edges are e1; e4; e5; e6; e9 and e10 ; the output 

triangles are (e1; e9; e4) and (e5; e10; e6).triangles are (e1; e9; e4) and (e5; e10; e6).
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Tessellation
3D – Marching Cubes

6. Compute the position of the cut vertices by linear 

interpolation:

vs =αva + 1−α( )vb

α =
f vb( )

f v( )− f v( )
7. Compute the vertex normals

8. Move to the next cube

f vb( )− f va( )
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Tessellation
3D – configurations, consistency

� Have  to make consistent choices for neighboring 

cubes

� Prevent  “ holes“ in the triangulation
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Tessellation
Grid-Snapping

� Problems with short triangle edges

� When the surface intersects the cube close to a corner, the resulting 

tiny triangle doesn‘t contribute much area to the mesh

� When the intersection is close to an edge of the cube, we get skinny 

triangles (bad aspect ratio)

Triangles with short edges waste resources but don‘t � Triangles with short edges waste resources but don‘t 

contribute to the surface mesh representation
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Tessellation
Grid-Snapping

� Solution: threshold the distances between the created 

vertices and the cube corners

� When the distance is smaller than dsnap we snap the vertex to 

the cube corner

� If more than one vertex of a triangle is snapped to the same � If more than one vertex of a triangle is snapped to the same 

point, we discard that triangle altogether
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Tessellation
Grid-Snapping

� With Grid-Snapping one can obtain significant reduction of 

space consumption

Parameter 0 0,1 0,2 0,3 0,4 0,46 0,49

5

Vertices 1446 1398 1254 1182 1074 830 830

Reduction 0 3,3 13,3 18,3 25,7 42,6 42,6
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Tessellation
Sharp corners and sharp edges

� (Kobbelt et al. 2001):

� Evaluate the normals

� When they significantly differ, create additional 

vertexvertex
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