CS 523: Computer Graphics, Spring 2011 Shape Modeling

Laplacian mesh processing

Andrew Nealen, Rutgers, 2011

Laplacian mesh optimization

Reminder: mesh smoothing result

Laplacian mesh optimization

Reminder: mesh smoothing setup

- Mesh smoothing L = L_{cot} (outer fairness) or L = L_{uni} (outer and inner fairness)
- Controlled by W_P and W_L (Intensity, Features)
- Least squares solve using A^TA x = A^T b
 normal equations x = (A^TA)⁻¹ A^T b

Andrew Nealen, Rutgers, 2011

Using W_P

Using W_P and W_L

Discrete Laplacians

Surface reconstruction

Surface reconstruction + editing

Least-squares solution

Tangential smoothing

Tangential smoothing

Tangential smoothing

Idea

Can we use such a system for global optimization ?

One solution

All vertices are (weighted) anchors

- Preserves global shape
- Uses existing LS framework
- Anchor + Laplacian weights determine result

Laplacian mesh processing framework

Detail preserving tri shape optimization for

 $L = L_{uni}$ and $f = \delta_{cot}$ (similar to local optimization)

Mesh smoothing L = L_{cot} (outer fairness) or L = L_{uni} (outer and inner fairness) and f = 0

Application: Triangle shape optimization

Global vertex relocation

Triangle shape Optimization

By global vertex relocation

• **Detail preserving tri shape optimization** for L = L_{uni} and f = δ_{cot} (similar to local optimization)

Positional Weights

Constant Weights

Linear Weights

CDF Weights

CDF Weights

Original

Andrew Nealen, Rutgers, 2011

Tri Shape Optimization

Andrew Nealen, Rutgers, 2011

Application: Detail preserving mesh editing

Retain local features as much as possible

Laplacian mesh processing framework

Detail preserving mesh editing for

$$L = L_{uni \text{ or } cot}$$
 and $f = \delta_{uni \text{ or } cot}$

Laplacian surface editing framework

Detail preserving mesh editing for

$$L = L_{uni \text{ or } cot}$$
 and $f = \delta_{uni \text{ or } cot}$

 using a subset of the mesh, padded by anchor vertices A and using vertices H as the deformation control handle

Laplacian surface editing framework

- Region of interest (ROI) is bounded by a belt of static anchors
- Manipulation through handle vertices

Why local Laplacian coordinates?

- Local detail representation enables detail preservation through various modeling tasks
- Representation with sparse matrices
- Efficient linear surface reconstruction

