
CS 523: Computer Graphics, Spring 2011 

Shape Modeling

Linear algebra tools for

geometric modeling
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Recap
Surface acquisition and reconstruction
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Recap
Implicit functions

� Implicit function?

f (pi) = 0

� Need extra constraints

to avoid trivial solution

f (pi+ε ni) = +ε
f (pi –εni) = –ε
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implicit

function

f(x)<0

f(x)>0

extra

constraints

f (pi) = 0

f (pi) > 0

f (pi) < 0
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Recap
Implicit functions

� Radial basis function

� Constraints: f (pi) = 0,  f (pi+α ni) = α
� Need to solve for wi
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Recap
Implicit functions

� Moving least squares

� Need to solve locally for fx, where  fx is a 

polynomial (solve for the coefficients ck) 

fx(x) = c0 + c1 x + c2 y + c3 x
2 + c4 xy + c5 y

2…

= cTb(x).
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RBF vs. MLS

� Need to solve for the 
weights wi

� Closed formulation

� Requires solving a linear 
system of size n×n (n is
the number of points!)

� Solve for the local 
polynomial in each x

� No global closed formula 
– each point has its own 
function fit

� Requires solving a linear 
system of size k×k (k is 
the order of the 
polynomial) for each 
evaluation
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Algebraic tools

Linear least squares

But first reminder: vectors/points, 

inner product, projection
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Points and Vectors
Basic definitions

� Points specify location in space (or in the 

plane). 

� Vectors have magnitude and direction (like 

velocity).

Points ≠ Vectors
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Point + vector = point
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vector + vector = vector

� Parallelogram rule
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point – point = vector

A

B

A

B
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point + point: not defined!!

� Unless we are computing a weighted average 

of points (weighted centroid).

� If the weights sum up to one, the average is 

meaningful.
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Dot product

� Defined for vectors:

〈v, w〉 = ||v|| ⋅ ||w|| ⋅ cosθ

θ

L v

w

Projection of w onto v

cosθ = L / ||w||

L = ||w|| cosθ = 〈v, w〉 / ||v||
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Dot product
in coordinates

v

w

v1

v2

w1

w2

O

v = (v1, v2, … , vd)
T

w = (w1, w2, …, wd)
T

〈v, w〉 = vTw = wTv =
= v1w1 + v2w2 + … + vdwd
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Dot product
names, notations

� Dot product is also called inner product

� Notations:  〈v, w〉 or v ⋅ w  or  vTw (= wTv)
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Dot product
Perpendicular (orthogonal) vectors

〈v, w〉 = vTw = 0

In 2D only: if v = (x, y)  

then  v⊥⊥⊥⊥ = ±±±±(–y, x)

v

v⊥
n

p0

q

π

General hyper-plane:

all points q such that

〈q – p0, n〉 = 0
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Least squares fitting
Motivation

� Why are we going over this again?

� Many of the shape modeling methods presented 

in later lectures minimize functionals of the form

copt = argmin ||Ac – b||
2
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y = f (x)

Least squares fitting
Motivation

� Given data points, fit a function that is “close” 

to the points

y

x

pi = (xi, yi)
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Simple example
line fitting – 1st order polynomial in 2D

� y-offsets minimization

x

y

pi = (xi, yi)
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� Find a line y = ax + b that minimizes

� E(a,b) is quadratic in the unknown parameters a, b

� Another option would be, for example:

� But – it is not differentiable, harder to minimize…

2
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Simple example
line fitting – 1st order polynomial in 2D

20



� To find optimal a, b we differentiate E(a, b):

E(a, b) =      (–2xi)[yi – (axi + b)] = 0

E(a, b) =         (–2)[yi – (axi + b)] = 0

a∂

∂
∑
=

n

i 1

∑
=

n

i 1b∂

∂
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Simple example
line fitting – LS minimization
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� We obtain two linear equations for a, b:

(–2xi)[yi – (axi + b)] = 0

(–2)[yi – (axi + b)] = 0

∑
=

n

i 1

∑
=

n

i 1
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Simple example
line fitting – LS minimization
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� We get two linear equations for a, b:

[xiyi – axi
2
– bxi] = 0

[yi – axi – b] = 0

∑
=

n

i 1

)1(

∑
=

n

i 1

)2(
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Simple example
line fitting – LS minimization
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� We get two linear equations for a, b:

( xi
2
) a + ( xi) b =      xiyi

(     xi) a + (     1) b =      yi

∑
=

n

i 1

∑
=

n

i 1

∑
=

n

i 1

∑
=

n

i 1

∑
=

n

i 1

∑
=

n

i 1
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Simple example
line fitting – LS minimization
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� Solve for a, b using e.g. Gauss elimination

� Question: why the solution is the minimum for 

the error function?

E(a, b) =       [yi – (axi + b)]
2∑

=

n

i 1
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Simple example
line fitting – LS minimization
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Fitting polynomials

y

x
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� Decide on the degree of the polynomial, k

� Want to fit f (x) = akx
k
+ ak-1x

k–1
+ … + a1x+ a0

� Minimize:

E(a0, a1, …, ak) =      [yi – (akxi
k
+ak-1xi

k–1
+ …+a1xi+a0)]

2

E(a0,…,ak) =      (– 2x
m
)[yi – (akxi

k
+ak-1xi

k–1
+…+ a0)] = 0

Fitting polynomials

∑
=

n

i 1

∑
=

n

i 1ma∂
∂
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Fitting polynomials

� We get a linear system of  k+1 equations in k+1 variables
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2 1

1 1 1 1

1 2
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0
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1
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General parametric fitting

� We can use this approach to fit any function  f (x)

� Specified by parameters c1, c2, c3, …

� The expression f (x) linearly depends on the parameters.

� f (x) = c1 f1(x) + c2 f2(x) + … + ck fk(x)

� Minimize – find best c1, c2, c3 … :

||f (pi) – fi||
2 =      ||    cj fj (pi)  – fi ||

2
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Solving linear systems in LS sense

� Let’s look at the problem a little differently:

� We have data points pi and desired function values fi

� We would like :

∀ i =1, …, n:     f (pi) = fi

� Strict interpolation is in general not possible

� In polynomials: n+1 points define a unique interpolation 

polynomial of degree n. 

� So, if we have 1000 points and want a cubic polynomial, we 

probably won’t find it…
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Solving linear systems in LS sense

� We have an over-determined linear system n×k:

f (p1) = c1 f1(p1) + c2 f2(p1) + … + ck fk(p1) = f1

f (p2) = c1 f1(p2) + c2 f2(p2) + … + ck fk(p2) = f2

…

f (pn) = c1 f1(pn) + c2 f2(pn) + … + ck fk(pn) = fn
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Solving linear systems in LS sense

� In matrix form:

2/8/2011Andrew Nealen, Rutgers, 2011
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Solving linear systems in LS sense

� In matrix form:

Ac = b

where A = ( fj (pi) )i,j is a rectangular n×k matrix, n>k

c = (c1, c2, …, ck)
T b = (f1, f2, …, fn)

T

2/8/2011Andrew Nealen, Rutgers, 2011
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A b

c
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Solving linear systems in LS sense

� More constrains than variables – no exact 

solutions generally exist

� We want to find something that is an 

“approximate solution”:

copt = argmin ||Ac – b||
2

2/8/2011Andrew Nealen, Rutgers, 2011

c

34



Finding the LS solution

� c ∈ R
k

� Ac ∈ Rn

� As we vary c,  Ac varies over the linear 

subspace of R
n

spanned by the columns of A:

Ac = A2A1 Ak

c1

c2

.

.

ck

=  c1 A1 A2 Ak+ c2 +… + ck

2/8/2011Andrew Nealen, Rutgers, 2011

This is also known as the column space of A
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Finding the LS solution

� We want to find the closest Ac to b: min ||Ac – b||2

2/8/2011Andrew Nealen, Rutgers, 2011

Subspace spannedSubspace spanned

by columns of by columns of AA

b

R
n

Ac

closest to b

c
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Finding the LS solution

� The point Ac closest to b satisfies:

(Ac – b) ⊥ {subspace of A’s columns}

∀ column Ai: 〈Ai, Ac – b〉 = 0

∀ i,  Ai
T
(Ac – b) = 0

A
T
(Ac – b) = 0

(A
T
A)c = A

T
b

These are

called the 

normal equations
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Finding the LS solution

� We have a square symmetric 

system (A
T
A)c = A

T
b

(k×k)

� If A has full rank (the columns of A are linearly 

independent) then (A
T
A) is invertible.

2/8/2011Andrew Nealen, Rutgers, 2011
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� If each constraint has a weight in the energy:

� The weights wi > 0 and don’t depend on c

� Then:

min (Ac – b)
T
W

T
W (Ac – b) where W = (wi)ii

(A
T 
W2A) c =  A

T 
W2 b

Weighted least squares

2/8/2011Andrew Nealen, Rutgers, 2011
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Principal Component Analysis

But first, reminder about 

eigenvectors and eigenvalues

Andrew Nealen, Rutgers, 2011 2/8/2011 40



Motivation

x

y

2/8/2011Andrew Nealen, Rutgers, 2011

� Given a set of points, find the best line that 

approximates them

41



� We just saw how to fit a parametric line 

y = ax +b, but this does not work for vertical lines

Motivation

x

y

2/8/2011Andrew Nealen, Rutgers, 2011 42



� How to fit a line such that the true (orthogonal)

distances are minimized?

Motivation

x

y

2/8/2011Andrew Nealen, Rutgers, 2011 43



� PCA finds axes that minimize the sum of distances2

Principal Component Analysis

x

y

x’

y’
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Linear algebra recap
Vector space

� Informal definition: 

� V ≠ ∅ (a non-empty set of vectors)

� v, w ∈ V ⇒ v + w ∈ V (closed under addition)

� v ∈ V, α is scalar ⇒ αv ∈ V (closed under multiplication by 

scalar)

� Formal definition includes axioms about associativity and 
distributivity of the + and ⋅ operators.  

� 0∈ V  always!

2/8/2011Andrew Nealen, Rutgers, 2011 45



� Let  π be a plane through the origin in 3D

� V = {p – O | p ∈ π} is a linear subspace of R
3

y

z

x

O

Linear algebra recap
Vector space – example
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� The vectors {v1, v2, …, vk} are a linearly 

independent set if:

α1v1 + α2v2 + … + αkvk = 0    ⇔ αi = 0 ∀ i

� It means that none of the vectors can be 

obtained as a linear combination of the 

others.

Linear algebra recap
Linear independence
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� Parallel vectors are always dependent:

� Orthogonal vectors are always independent.

v
w

v = 2.4 w ⇒ v + (−2.4)w = 0

Linear algebra recap
Linear independence
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� {v1, v2, …, vn} are linearly independent

� {v1, v2, …, vn} span the whole vector space V:

V = {α1v1 + α2v2 + … + αnvn | αi is scalar}

� Any vector in V is a unique linear combination 

of the basis.

� The number of basis vectors is called the 

dimension of V.

Linear algebra recap
Basis of a vector space V
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M

N

Linear algebra recap
Basis example

� Grayscale N×M images:

� Each pixel has value 

between 0 (black) 

and 1 (white)

� The image can be 

interpreted as 

a vector ∈ RN⋅M
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Linear algebra recap 
The “standard” basis (4×4)

2/8/2011Andrew Nealen, Rutgers, 2011 51



*1  +  *(2/3)  +  *(1/3)  =  

Linear algebra recap 
The “standard” basis (4×4) – linear combinations
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� Used for JPEG encoding 

Linear algebra recap 
Discrete cosine basis
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� Matrix A (n×n) is orthogonal if A
−1
= A

T

� Follows: AA
T
= A

T
A = I

� The rows of A are orthonormal vectors!

I = AT A = 

v1
v2

vn

= vi
Tvj = δijv1 v2 vn

⇒ 〈vi, vi〉 = 1 ⇒ ||vi|| = 1; 〈vi, vj〉 = 0

Linear algebra recap 
Orthogonal matrices (orthonormal basis)
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� A is orthogonal matrix ⇒ A represents a 

linear transformation that preserves dot 

product (i.e., preserves lengths and angles):

(Av)
T 
(Aw) = v

T
A
T
Aw = v

T
w

� Therefore,  ||Av|| = ||v|| and 

∠(Av,Aw) = ∠(v,w)

Linear algebra recap 
Orthogonal transformations

O

O
2/8/2011Andrew Nealen, Rutgers, 2011 55



� A is a square n×n matrix

� v is called eigenvector of A if:

� Av = λv (λ is a scalar)

� v ≠ 0

� The scalar λ is called eigenvalue

� Av = λv ⇒ A(αv) = λ(α v)⇒ α v is also eigenvector

� Av = λv, Aw = λw ⇒ A(v+w) = λ(v+w)
� Therefore, eigenvectors of the same λ form a linear 

subspace.

Linear algebra recap 
Eigenvectors and eigenvalues

Av = λv
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� An eigenvector spans an axis (subspace of dimension 1) that 

remains the same under the transformation A.

� Example – the axis of rotation:

O

Eigenvector of the

rotation transformation

Linear algebra recap 
Eigenvectors and eigenvalues
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� The set of all the eigenvalues of A is called 

the spectrum of A.

� A is diagonalizable if A has n independent 

eigenvectors. Then:

1 1 1

2 2 2

n n n

A

A

A

λ

λ

λ

=

=

=

v v

v v

v v

M A v2v1 vn
= v2v1 vn

λ1

λ2

λn

AV  =  VD

Linear algebra recap 
Spectrum and diagonalization
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� Therefore, A = VDV
−1

, where D is diagonal

� A represents a scaling along the eigenvector 

axes!

A = v2v1 vn

λ1

λ2

λn

v2v1 vn

−1

A =  VDV
−1

1 1 1

2 2 2

n n n

A

A

A

λ

λ

λ

=

=

=

v v

v v

v v

M

Linear algebra recap 
Spectrum and diagonalization
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� If A is symmetric, the eigenvectors are 

orthogonal and there’s always an eigenbasis.

A

A = UDU
T



















nλ

λ
λ

O

2

1

D= Aui = λiui

Linear algebra recap 
Symmetric matrices
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Principal Component Analysis
Basic idea

Andrew Nealen, Rutgers, 2011 2/8/2011

� PCA finds an orthogonal basis that best represents 

given data set

� PCA finds a best approximating line/plane/axes… 

(in terms of Σdistances2)

x y

z

x

y

x’

y’
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� PCA finds an orthogonal basis that best represents 

given data set

� PCA finds a best approximating line/plane/axes… 

(in terms of Σdistances2)

3D point set in

standard basis

Principal Component Analysis
Basic idea
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� An axis-aligned bounding box: agrees with the 

standard axes 

x

y

minX maxX

maxY

minY

Principal Component Analysis
Applications
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� Tighter fit

x’
y’

Principal Component Analysis
Application: oriented bounding box
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� Axis aligned bounding box

x y

z

Principal Component Analysis
Application: oriented bounding box
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� Oriented bounding box by PCA

Principal Component Analysis
Application: oriented bounding box
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� Serve as very simple “approximation” of the object

� Fast collision detection, visibility queries

� Whenever we need to know the dimensions (size) of the object

Principal Component Analysis
Application: oriented bounding box

� The models consist of 

thousands of polygons

� To quickly test that they 

don’t intersect, the 

bounding boxes are 

tested

� Sometimes a hierarchy 

of BB’s is used

� The tighter the BB – the 

less “false alarms” we 

have
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normal

2/8/2011Andrew Nealen, Rutgers, 2011

Principal Component Analysis
Application: local frame fitting
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Principal Component Analysis
Application: estimate normals
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Notations

� Denote our data points by  x1, x2, …, xn ∈ R
d

� Center of mass:

� Vectors from the centroid:

2/8/2011Andrew Nealen, Rutgers, 2011

1

1

n

in
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= ∑m x

yi = xi –m
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� The origin of the new axes will be the center 

of mass m

� It can be shown that:

The origin of the new axes

1

1

n

in

i=

= ∑m x2

1

argmin
n

i

i=

= ∑
x

m x - x
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Variance of projected points

� Let us measure the variance (scatter) of our points in different directions

� Let’s look at a line L through the center of mass m, and project our points 

xi onto it. The variance of the projected points x′i is:  

Original set Small variance Large variance

21

1

var( ) || ||
n

in

i

L
=

′= −∑ x m

L L L L
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Variance of projected points

� Given a direction v, ||v|| = 1 line L through m in the direction 

of v is L(t) = m + vt .

||x′i – m|| = 〈v, xi –m〉 / ||v|| = 〈v, yi 〉 = v
T
yi = yi

T
v

v
m

xi

x’i
L
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Variance of projected points

� So,

where Y is a d×n matrix with yk = xk – m as columns.

� The scatter matrix Smeasures the variance of our points

2/8/2011Andrew Nealen, Rutgers, 2011
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Directions of maximal variance

� So, we have:   var(L) = v
T
Sv

� Theorem: 

Let f : {v ∈ R
d
|  ||v|| = 1}→ R,  

f (v) = v
T
Sv (and S is a symmetric matrix).

Then, the extrema of f are attained at the eigenvectors of S.

� So, eigenvectors of S are directions of maximal/minimal 

variance!
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Directions of maximal variance

2/8/2011Andrew Nealen, Rutgers, 2011

� Find extrema of v
T
Sv

� side condition v
T
v=1

� Lagrange Multipliers:

� This is the definition of an eigenvector of S

0=∇+∇ gf λ

vv

vv

vvvv

λ
λ

λ

−=

=+

=−∇+∇

S

S

S
TT

0

0)1()(
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Summary so far

� We take the centered data vectors y1, y2, …, yn∈ R
d

� Construct the scatter matrix

� S measures the variance of the data points

� Eigenvectors of S are directions of maximal variance.

TS YY=
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Scatter matrix -

eigendecomposition

� S is symmetric

⇒⇒⇒⇒ S has eigendecomposition:  S = VΛVT

S = v2v1 vd

λ1

λ2

λd

v2

v1

vd

The eigenvectors form

orthogonal basis

2/8/2011Andrew Nealen, Rutgers, 2011 78



Principal components

� Eigenvectors that correspond to big
eigenvalues are the directions in which the 
data has strong components (= large 
variance).

� If the eigenvalues are more or less the same –
there is no preferable direction. 

� Note: the eigenvalues are always non-
negative. Think why…
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� There’s a clear preferable 
direction

� S looks like this:

� µ is close to zero, much 
smaller than λ

Principal components

� There’s no preferable 

direction

� S looks like this:

� Any vector is an 

eigenvector 

TV V
λ

λ
 
 
 

T
VV 







µ

λ

2/8/2011Andrew Nealen, Rutgers, 2011 80



How to use what we got

� For finding oriented bounding box – we simply 

compute the bounding box with respect to the 

axes defined by the eigenvectors. The origin is 

at the mean point m.

v2
v1

v3
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For approximation

x

y

v1

v2

x

y

This line segment approximates the 

original data set

The projected data set approximates 

the original data set

x

y
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For approximation

� In general dimension d, the eigenvalues are 

sorted in descending order:

λ1 ≥ λ2 ≥ … ≥ λd

� The eigenvectors are sorted accordingly.

� To get an approximation of dimension d’ < d, 

we take the d’ first eigenvectors and look at 

the subspace they span (d’ = 1 is a line, d’ = 2

is a plane…)
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For approximation

� To get an approximating set, we project the 

original data points onto the chosen subspace:

xi = m + α1v1+ α2v2+…+ αd’vd’+…+αdvd

Projection:

xi’ = m + α1v1+ α2v2+…+ αd’vd’+0⋅vd’+1+…+ 0⋅ vd
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Technical remarks:

� λi ≥ 0, i = 1,…,d (such matrices are called positive semi-

definite). So we can indeed sort by the magnitude of λi

� Theorem:  λi ≥ 0 ⇔ <Sv, v> ≥ 0   ∀v
Proof:

Therefore, λi ≥ 0 ⇔ <Sv, v> ≥ 0   ∀v

,

( ) ( ) ,

T T T T

T T T T

S V V S S V V

V V

= Λ ⇒ < > = = Λ =

= Λ = Λ =< Λ >

v v v v v v

v v v v v v

2 2 2

1 2, ... dS λ λ λ< > = + + +1 2 dv v u u u
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