
CS 523: Computer Graphics, Spring 2011

Shape Modeling

Digital Geometry Processing

2/22/2011Andrew Nealen, Rutgers, 2011

Topics

� Smoothing

� Simplification

� Parameterization

� Remeshing

2/22/2011Andrew Nealen, Rutgers, 2011

Mesh Smoothing

Curve smoothing

Taubin smoothing

Implicit fairing

Laplacian mesh optimization

2/22/2011Andrew Nealen, Rutgers, 2011

() ()iii-ii xxxxx −+−=∆ +11
2

1

2

1

xx K−=∆

Laplacian smoothing
2D Curve

� Discrete Laplacian for a single vertex

� In matrix-vector form for the whole curve

2/22/2011Andrew Nealen, Rutgers, 2011

Smoothing

� Gaussian filtering

� Scale factor 0 < λ < 1

� Matrix-vector form x′′′′ = x – λ Kx

� Works identical for surface smoothing

� Choose (normalized) Laplacian weights

� Drawbacks

� Causes the curve/mesh to shrink

iii λ xxx ∆+=′

2/22/2011Andrew Nealen, Rutgers, 2011

Original curve

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

1st iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

2nd iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

8th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

27th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

50th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

500th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

1000th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

5000th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

10000th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

50000th iteration; λ=0.5

Laplacian smoothing
2D Curve – Example

2/22/2011Andrew Nealen, Rutgers, 2011

Surface smoothing

� Normalized Laplacian weights

vj

vi

α
β

2/22/2011Andrew Nealen, Rutgers, 2011

Surface smoothing

� Matrix-vector notation for L(x) = Lx

vi

vj

α
β

L is the n x n

Laplacian Matrix

2/22/2011Andrew Nealen, Rutgers, 2011

Taubin smoothing

� Idea: perform inflation

after shrinking step

� Pick a

� Iterate the following two
steps

� Simple to implement

� Requires many iterations

� Need to tweak µ and λ

10

iterations

50

iterations

original

200

iterations

2/22/2011Andrew Nealen, Rutgers, 2011

Implicit fairing

� Model smoothing as a diffusion process

� Scale λ by simulation parameter time t

� Backward Euler for unconditional stability

2/22/2011Andrew Nealen, Rutgers, 2011

� Use cotangent instead of uniform Laplacian

Implicit fairing

2/22/2011Andrew Nealen, Rutgers, 2011

Laplacian mesh optimization

2/22/2011Andrew Nealen, Rutgers, 2011

Laplacian mesh optimization

� Mesh smoothing L = Lcot (outer fairness) or L = Luni (outer

and inner fairness)

� Controlled by WP and WL (Intensity, Features)

� Least squares solve using

normal equations

=L x 0
WL WL

pWP WP

ATA x = bAT

(ATA)-1x = bAT

2/22/2011Andrew Nealen, Rutgers, 2011

Using WP

2/22/2011Andrew Nealen, Rutgers, 2011

Using WP and WL

2/22/2011Andrew Nealen, Rutgers, 2011

Mesh Simplification

Level of detail (LOD)

Hausdorff distance

Mesh optimization

Error quadrics

2/22/2011Andrew Nealen, Rutgers, 2011

� Polygon simplification and level of detail (LOD)

reduce geometric complexity of (small) objects

RuntimeRuntime
Select LOD based on screen sizeSelect LOD based on screen size

PreprocessPreprocess
Compute Levels Compute Levels of Detail (LOD)of Detail (LOD)

Progessive representations

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Criteria

� Usually based on visual error

� Difficult to quantify

� Often used

� Geometric distance between original und simplified

object

� Volume between original and simplified object

� Difference between surface normals between original

and simplified object

� Combination of multiple criteria

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Criteria

� Why geometric distance?

� Fails for occluded/foreshortened parts of the

mesh

2/22/2011Andrew Nealen, Rutgers, 2011

� Hausdorff distance (distance between point sets):

U

d(u,v)

do(U,V)

u

V

d(u,V)

Vdo(V,U)

Approximation criteria
Geometric distance

u,v∈Rd : d(u,v)= u−v

u∈Rd,V⊂Rd :d(u,V)= inf
v∈V

d(u,v)

()),(),,(max),(:R,R

),(),(

),(infsup),(:R,R

OOH

OO

O

UVVUVUVU

UVVU

vuVUVU
VvUu

ddd

dd

dd

dd

dd

=⊂⊂

≠

=⊂⊂
∈∈

2/22/2011Andrew Nealen, Rutgers, 2011

Approximation criteria
Geometric distance

W

V

do(W,V)
do(V,W)

� Hausdorff distance

� Generally bad for

orientation or shape

comparison

� Very good metric for

comparing original to

simplified model

� Topolocial

correspondence

improves results W
V

d
2

d1

2/22/2011Andrew Nealen, Rutgers, 2011

Mesh optimization
Local operations

� Three local operations

[Hoppe 1993]

� Edge Collapse

� Edge Split

� Edge Swap/Flip

� Minimize some global energy

2/22/2011Andrew Nealen, Rutgers, 2011

Mesh optimization
Results

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Edge collapse

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Evaluating the operations

� For edge collapse selection, the approximation
error must be evaluated

� Possibilities:

� Hausdorff distance (expensive)

� One-sided Hausdorff distance

� Accumulate squared distances to planes (Error
quadrics)

� Basic operation: edge collapse

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Error quadrics

� Compute squared distance to planes

� Example: planar polygons

()

kkk

iiiii

iiiii

iiiii

T

iiiiiiik

T

yxikyx

T

iiiyx

iyixii

ccbca

cbbba

cabaa

cbacba

vvvv

cbavv

cvbvad

21

2

2

2

2

22

),,)(,,(

,)1,,()1,,(

),,)(1,,(

)(

QQQ

Q

Q

+=

=

=

=

=

++=

1,:

1,:

2

2

2

22222

2

1

2

11111

=+++

=+++

bacybxag

bacybxag

Qk

v
d1d2

d1

2 + d1

2 = vTQkv

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Error quadrics

� [Garland/Heckbert 97]:

propagate error quadric by addition

Q1

collapse

Q
2

Q3 Q1+Q2

Q
2

Q3

Q1+Q2

Q
2

Q
1

Q
3

2/22/2011Andrew Nealen, Rutgers, 2011

Qk

Simplification
Error quadrics

� Triangle meshes

()

∑=

=

=

=

=

+++=

i

ikk

iiiiiii

iiiiiii

iiiiiii

iiiiiii

T

iiiiiiiiik

T

zyxikzyx

iiiizyx

iziyixii

ddcdbda

dcccbca

dbcbbba

dacabaa

dcbadcba

vvvvvv

dcbavvv

dvcvbvae

QQ

Q

Q

2

2

2

2

2

22

),,,)(,,,(

,)1,,,()1,,,(

),,,)(1,,,(

)(

1,:
22

1

2

1 =+++++ iiiiik cbadzcybxap

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Error quadrics

� Special cases

� Face Flips: in collapsing
the blue edge, the
normal of the green
face has flipped

� These cases must be
detected and avoided

� OpenMesh takes care
of this for you

� OpenMesh has error
quadrics implemented

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Error quadrics

� Advantages

� Simple error computation

� Very fast

� Geometric interpretation

� Good approximation of the original

� Can collapse vertices that are not connected
via edges

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Error quadrics

� Disadvantages

� One sided distance only (from new to original)

� Loss of symmetry

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Algorithm

� Operation and error metric define algorithm

� Compute error for every atomic simplification

operation

� Create a priority queue based on the error

� While the queue is non-empty

� Perform first simplification operation and remove from queue

� Recompute the error for neighboring operations and update

the priority queue accordingly

2/22/2011Andrew Nealen, Rutgers, 2011

Simplification
Mesh Saliency [Lee et al. 2005]

� Take salient features into account when

simplifying the mesh

2/22/2011Andrew Nealen, Rutgers, 2011

Parameterization and Remeshing

2/22/2011Andrew Nealen, Rutgers, 2011

Surface parameterization

3D space (x,y,z)
2D parameter domain (u,v)

boundary

boundary

2/22/2011Andrew Nealen, Rutgers, 2011

Texture mapping

2/22/2011Andrew Nealen, Rutgers, 2011

Texture mapping

Image from Vallet and Levy, techreport INRIA2/22/2011Andrew Nealen, Rutgers, 2011

Mesh parameterization
Requirements

� Bijective (1-1 and onto): No triangles fold over.

� Minimal “distortion”

� Preserve 3D angles

� Preserve 3D distances

� Preserve 3D areas

� No “stretch”

2/22/2011Andrew Nealen, Rutgers, 2011

Distortion minimization

Kent et al ‘92 Floater 97 Sander et al ‘01

Texture map

2/22/2011Andrew Nealen, Rutgers, 2011

Sensitivity to mesh quality

Good

parameterization algorithm

Not so good

parameterization algorithm2/22/2011Andrew Nealen, Rutgers, 2011

Area distortion vs. angle distortion

2/22/2011Andrew Nealen, Rutgers, 2011

Texture map

Tutte Shape-preserving Conformal

Conformal parameterization

2/22/2011 Andrew Nealen, Rutgers, 2011

Conformal parameteriztion
angle preservation; circles are mapped to circles

2/22/2011Andrew Nealen, Rutgers, 2011

Non-disk domains

2/22/2011Andrew Nealen, Rutgers, 2011

Cutting

2/22/2011Andrew Nealen, Rutgers, 2011

Non-Constrained Planar Spherical

2/22/2011 Andrew Nealen, Rutgers, 2011

Parameterization of closed genus-0
triangle meshes

Why parameterization?

� Allows us to do many things in 2D and then

map those actions onto the 3D surface

� It is often easier to operate in the 2D domain

� Mesh parameterization allows to use some

notions from continuous surface theory

2/22/2011Andrew Nealen, Rutgers, 2011

Remeshing

2/22/2011Andrew Nealen, Rutgers, 2011

Remeshing

� Particular remeshing type according to

application

original uniform adapted semi-regular

2/22/2011Andrew Nealen, Rutgers, 2011

Remeshing examples

2/22/2011Andrew Nealen, Rutgers, 2011

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

Density function in parameter space

Measure curvatureModel Flatten it

conformally

2/22/2011Andrew Nealen, Rutgers, 2011

� Importance map created according to application needs

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

Importance map

filtering

Area stretch

filtering

Curvatures

2/22/2011Andrew Nealen, Rutgers, 2011

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

� Importance map is sampled by points – as in halftoning

2/22/2011Andrew Nealen, Rutgers, 2011

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

� Importance map is sampled by points – as in halftoning (error

diffusion process)

2/22/2011Andrew Nealen, Rutgers, 2011

� Sampled points are triangulated using

Delaunay

� Using the parameterization, the 2D points are

lifted back into 3D

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

2/22/2011Andrew Nealen, Rutgers, 2011

� More results

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

2/22/2011Andrew Nealen, Rutgers, 2011

� More results

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

2/22/2011Andrew Nealen, Rutgers, 2011

Computing parameterizations

2/22/2011Andrew Nealen, Rutgers, 2011

Convex mapping (Tutte, Floater)

� Works for meshes equivalent to a disk

� First, we map the boundary to a convex polygon

� Then we find the inner vertices positions

v1, v2, …, vn – inner vertices; vn, vn+1, …, vN – boundary vertices

2/22/2011Andrew Nealen, Rutgers, 2011

Inner vertices

� We constrain each inner vertex to be a

weighted average of its neighbors:

n,,2,1
)(N

K== ∑
∈

i ,λ
ij

jji,i vv

1

)neighbours(),(0

neighborsnot are,0

)(

,

,

=

∈>
=

∑
∈ i�j

ji

ji
Eji

ji

λ

λ

λi,j

i

j

2/22/2011Andrew Nealen, Rutgers, 2011

Linear system of equations

n,,2,1

n,,2,10

B)(NB\)(N

)(N

K

K

I

==−

==−

∑∑

∑

∈∈

∈

i ,λλ

i ,λ

ik

kki,

ij

jji,i

ij

jji,i

vvv

vv

σ

σ

σ

=

−

−

−−

n

2

1

n

2

1

,n

,4

,1,1

1

1

1

1

v

v

v

MO

5

1

d11

j

j

jj

λ

λ

λλ

2/22/2011Andrew Nealen, Rutgers, 2011

Shape preserving weights

To compute λ1, …, λ5, a local embedding of the patch is found:

1) || pj – p || = || vj – v ||

2) angle(pj , p, pj+1) = (2π /Σθj) angle(vj , v, vj+1)

p4
p3

p5

p1

p
p2

2D3D

p = Σ λi pi

λi > 0

Σ λi = 1

⇒ use these λ as edge weights.∃ λi ,

v3 v2

v1v4 v5

v θ1

2/22/2011Andrew Nealen, Rutgers, 2011

Linear system of equations

� A unique solution always exists

� Important: the solution is legal (bijective). The

proof is not trivial.

� The system is sparse, thus fast numerical

solution is possible

� Numerical problems (because the vertices in

the middle might get very dense…)

2/22/2011Andrew Nealen, Rutgers, 2011

Conformal mapping
Also called harmonic

� Another way to find inner vertices

� Strives to preserve angles (conformal)

� We treat the mesh as a system of springs.

� Define spring energy:

where vi are the flat position (remember that the boundary

vertices vn, vn+1, …, v� are constrained).

∑
∈

−=
E)(

2

harm
2

1
E

ji,

jiji,k vv

2/22/2011Andrew Nealen, Rutgers, 2011

Energy minimization – least squares

� We want to find flat positions that minimize

the energy.

� Solve the linear least squares problem!

().)()(
2

1

2

1
)(E

)(

E)(

22

E)j,i(

2

harm

∑

∑

∈

∈

−+−=

=−=

=

ji,

jijiji,

jiji,n1n1

iii

yyxxk

ky,,y,x,,x

y,x

vv

v

KK

Eharm is function of 2n variables

2/22/2011Andrew Nealen, Rutgers, 2011

The spring constants ki,j

� The weights ki,j are chosen to minimize angle

distortion:

ki,j = cot α + cot β

� The matrix of the normal equations is the

cotan Laplacian (without area weighting)

α β

i

j
3D

2/22/2011Andrew Nealen, Rutgers, 2011

Discussion

� The results of harmonic mapping are better than those of

convex mapping (local area and angles preservation).

� But: the mapping is not always legal (the weights can be

negative for badly-shaped triangles…)

2/22/2011Andrew Nealen, Rutgers, 2011

Discussion

� Both mappings have the problem of fixed boundary –

it constrains the minimization and causes distortion.

� More advanced methods do not require boundary conditions

(see references on the website).

ABF++ method,

Sheffer et al.
2/22/2011Andrew Nealen, Rutgers, 2011

