CS 523: Computer Graphics, Spring 2011 Shape Modeling

Digital Geometry Processing

- Smoothing
- Simplification
- Parameterization
- Remeshing

Topics

Mesh Smoothing

Curve smoothing
 Taubin smoothing Implicit fairing Laplacian mesh optimization

Laplacian smoothing 2D Curve

- Discrete Laplacian for a single vertex

$$
\Delta \mathbf{x}_{i}=\frac{1}{2}\left(\mathbf{x}_{i-1}-\mathbf{x}_{i}\right)+\frac{1}{2}\left(\mathbf{x}_{i+1}-\mathbf{x}_{i}\right)
$$

- In matrix-vector form for the whole curve

$$
\begin{aligned}
& \Delta \mathbf{x}=-K \mathbf{x} \\
& \\
& K=\frac{1}{2}\left(\begin{array}{rrrrr}
2 & -1 & & & -1 \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
-1 & & & -1 & 2
\end{array}\right)
\end{aligned}
$$

Smoothing

- Gaussian filtering

$$
\mathbf{x}_{i}^{\prime}=\mathbf{x}_{i}+\lambda \Delta \mathbf{x}_{i}
$$

- Scale factor $0<\lambda<1$
- Matrix-vector form $\mathbf{x}^{\prime}=\mathbf{x}-\lambda \mathrm{Kx}$
- Works identical for surface smoothing
- Choose (normalized) Laplacian weights
- Drawbacks
- Causes the curve/mesh to shrink

Laplacian smoothing 2D Curve - Example

Original curve

Laplacian smoothing 2D Curve - Example

1st iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

2nd iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

8th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

27th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

50th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

500th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

1000th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

5000th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

10000th iteration; $\lambda=0.5$

Laplacian smoothing 2D Curve - Example

50000th iteration; $\lambda=0.5$

Surface smoothing

- Normalized Laplacian weights $\sum_{\{i, j\} \in E} w_{i j}=1$

$$
\begin{aligned}
& \delta_{i}=\sum_{\{i, j\} \in \mathbf{E}} w_{i j}\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)=\left[\sum_{\{i, j\} \in \mathbf{E}} w_{i j} \mathbf{v}_{j}\right]-\mathbf{v}_{i} \\
& w_{i j}=\frac{\omega_{i j}}{\sum_{\{i, k\} \in \mathbf{E}} \omega_{i k}} \\
& \omega_{i j}=1, \\
& \omega_{i j}=\cot \alpha+\cot \beta
\end{aligned}
$$

Surface smoothing

- Matrix-vector notation for $L(\mathbf{x})=\mathbf{L x}$

Taubin smoothing

- Idea: perform inflation after shrinking step
- Pick a $\mu<-\lambda$
- Iterate the following two steps

$$
\begin{aligned}
x_{i}^{\prime} & =x_{i}+\lambda \Delta x_{i} \\
x_{i}^{\prime} & =x_{i}+\mu \Delta x_{i}
\end{aligned}
$$

- Simple to implement
- Requires many iterations
- Need to tweak μ and λ

Implicit fairing

- Model smoothing as a diffusion process

$$
\frac{\partial X}{\partial t}=\lambda L(X)
$$

- Scale λ by simulation parameter time t

$$
X^{n+1}=(I+\lambda d t L) X^{n}
$$

- Backward Euler for unconditional stability

$$
\begin{gathered}
X^{n+1}=X^{n}+\lambda d t L\left(X^{n+1}\right) \\
(I-\lambda d t L) X^{n+1}=X^{n}
\end{gathered}
$$

Implicit fairing

Figure 4: Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations with $\lambda d t=1$, (c) 1 implicit integration with $\lambda d t=10$ that takes only 7 PBCG iterations (30% faster), and (d) 20 passes of the $\lambda \mid \mu$ algorithm, with $\lambda=0.6307$ and $\mu=-0.6732$. The implicit integration results in better smoothing than the explicit one for the same, or often less, computing time. If volume preservation is called for; our technique then requires many fewer iterations to smooth the mesh than the $\lambda \mid \mu$ algorithm.

- Use cotangent instead of uniform Laplacian

Laplacian mesh optimization

Laplacian mesh optimization

- Mesh smoothing $L=L_{\text {cot }}$ (outer fairness) or $L=L_{\text {uni }}$ (outer and inner fairness)
- Controlled by W_{p} and W_{L} (Intensity, Features)
- Least squares solve using

$$
A^{\top} A x=A^{\top} b
$$

$$
x=\left(A^{\top} A\right)^{-1} \quad A^{\top} \mathbf{b}
$$

Using W

(a) original (173 k)

(c) cdf weights $(\mathrm{s}=0.2$)

(f) cdf weights ($\mathrm{s}=0.02$)

Using W_{P} and W_{L}

Mesh Simplification

Level of detail (LOD)
 Hausdorff distance
 Mesh optimization

Error quadrics

Progessive representations

- Polygon simplification and level of detail (LOD) reduce geometric complexity of (small) objects

Preprocess
Compute Levels of Detail (LOD)

Runtime
Select LOD based on screen size

Simplification

Criteria

- Usually based on visual error
- Difficult to quantify
- Often used
- Geometric distance between original und simplified object
- Volume between original and simplified object
- Difference between surface normals between original and simplified object
- Combination of multiple criteria

Simplification

Criteria

- Why geometric distance?
- Fails for occluded/foreshortened parts of the mesh

Approximation criteria

Geometric distance

- Hausdorff distance (distance between point sets):

$$
\begin{aligned}
& \mathbf{U} \subset \mathrm{R}^{d}, \mathbf{V} \subset \mathrm{R}^{d}: d_{\mathrm{O}}(\mathbf{U}, \mathbf{V})=\sup _{\mathbf{u} \in \mathbf{U}} \inf _{\mathbf{v} \in \mathbf{V}} d(\mathbf{u}, \mathbf{v}) \\
& d_{\mathrm{O}}(\mathbf{U}, \mathbf{V}) \neq d_{\mathrm{O}}(\mathbf{V}, \mathbf{U}) \\
& \mathbf{U} \subset \mathrm{R}^{d}, \mathbf{V} \subset \mathrm{R}^{d}: d_{\mathrm{H}}(\mathbf{U}, \mathbf{V})=\max \left(d_{\mathrm{O}}(\mathbf{U}, \mathbf{V}), d_{\mathrm{O}}(\mathbf{V}, \mathbf{U})\right)
\end{aligned}
$$

Approximation criteria

Geometric distance

- Hausdorff distance
- Generally bad for orientation or shape
 comparison
- Very good metric for comparing original to simplified model

- Topolocial correspondence improves results

Mesh optimization

Local operations

- Three local operations [Hoppe 1993]
- Edge Collapse
- Edge Split
- Edge Swap/Flip

- Minimize some global energy

$$
E(K, V)=E_{\text {dist }}(K, V)+E_{\text {rep }}(K)+E_{\text {spring }}(K, V)
$$

Mesh optimization

Results

Simplification

Edge collapse

Simplification

Evaluating the operations

- For edge collapse selection, the approximation error must be evaluated
- Possibilities:
- Hausdorff distance (expensive)
- One-sided Hausdorff distance
- Accumulate squared distances to planes (Error quadrics)
- Basic operation: edge collapse

Simplification

Error quadrics

- Compute squared distance to planes
- Example: planar polygons

$$
\begin{aligned}
& g_{1}: a_{1} x+b_{1} y+c_{1}, \quad a_{1}^{2}+b_{1}^{2}=1 \\
& g_{2}: a_{2} x+b_{2} y+c_{2}, \quad a_{2}^{2}+b_{2}^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
d_{i}^{2} & =\left(a_{i} v_{x}+b_{i} v_{y}+c_{i}\right)^{2} \\
& =\left(\left(v_{x}, v_{y}, 1\right)\left(a_{i}, b_{i}, c_{i}\right)^{T}\right)^{2} \\
& =\left(v_{x}, v_{y}, 1\right) \mathbf{Q}_{i k}\left(v_{x}, v_{y}, 1\right)^{T}, \\
\mathbf{Q}_{i k} & =\left(a_{i}, b_{i}, c_{i}\right)\left(a_{i}, b_{i}, c_{i}\right)^{T} \\
& =\left(\begin{array}{ccc}
a_{i}^{2} & a_{i} b_{i} & a_{i} c_{i} \\
a_{i} b_{i} & b_{i}^{2} & b_{i} c_{i} \\
a_{i} c_{i} & b_{i} c_{i} & c_{i}^{2}
\end{array}\right)
\end{aligned}
$$

$$
d_{1}^{2}+d_{1}^{2}=\mathbf{v}^{\mathrm{T}} \mathbf{Q}_{k} \mathbf{v}
$$

$$
\mathbf{Q}_{k}=\mathbf{Q}_{1 k}+\mathbf{Q}_{2 k}
$$

Simplification

Error quadrics

- [Garland/Heckbert 97]: propagate error quadric by addition

Simplification

Error quadrics

- Triangle meshes

$$
\begin{aligned}
e_{i}^{2} & =\left(a_{i} v_{x}+b_{i} v_{y}+c_{i} v_{z}+d_{i}\right)^{2} \\
& =\left(\left(v_{x}, v_{y}, v_{z}, 1\right)\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right)^{2} \\
& =\left(v_{x}, v_{y}, v_{z}, 1\right) \mathbf{Q}_{i k}\left(v_{x}, v_{y}, v_{z}, 1\right)^{T}, \\
\mathbf{Q}_{i k} & =\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\left(a_{i}, b_{i}, c_{i}, d_{i}\right)^{T} \\
& =\left(\begin{array}{ccc}
a_{i}^{2} & a_{i} b_{i} & a_{i} c_{i} \\
a_{i} d_{i} \\
a_{i} & b_{i}^{2} & b_{i} c_{i} \\
a_{i} d_{i} & c_{i} & b_{i} c_{i} \\
c_{i}^{2} & c_{i} d_{i} \\
a_{i} d_{i} & b_{i} d_{i} & c_{i} d_{i} \\
d_{i}^{2}
\end{array}\right) \\
\mathbf{Q}_{k} & =\sum_{i} \mathbf{Q}_{i k}
\end{aligned}
$$

Simplification

Error quadrics

- Special cases
- Face Flips: in collapsing the blue edge, the normal of the green face has flipped
- These cases must be detected and avoided
- OpenMesh takes care of this for you
- OpenMesh has error quadrics implemented

Simplification

Error quadrics

- Advantages
- Simple error computation
- Very fast
- Geometric interpretation
- Good approximation of the original

- Can collapse vertices that are not connected via edges

Simplification

Error quadrics

- Disadvantages
- One sided distance only (from new to original)
- Loss of symmetry

Simplification

Algorithm

- Operation and error metric define algorithm
- Compute error for every atomic simplification operation
- Create a priority queue based on the error
- While the queue is non-empty
- Perform first simplification operation and remove from queue
- Recompute the error for neighboring operations and update the priority queue accordingly

Simplification

Mesh Saliency [Lee et al. 2005]

- Take salient features into account when simplifying the mesh

Original (346K triangles)

Saliency

99% simplification (3.5 K triangles)

99% simplification (3.5K triangles)

98\% simplification (6.9 K triangles)
(a) Simplification by Qslim

98% simplification (6.9 K triangles)
(b) Simplification guided by saliency

99% simplification (3.5 K triangles)

99% simplification
(3.5 K triangles)

Parameterization and Remeshing

Surface parameterization

3D space (x, y, z)

Texture mapping

Texture mapping

Mesh parameterization

Requirements

- Bijective (1-1 and onto): No triangles fold over.
- Minimal "distortion"
- Preserve 3D angles
- Preserve 3D distances
- Preserve 3D areas
- No "stretch"

Distortion minimization

Texture map

Kent et al '92

Floater 97

Sander et al ‘01

Sensitivity to mesh quality

Good parameterizationalgorithm
 parameterization algorithm

Area distortion vs. angle distortion

Conformal parameterization

Conformal parameteriztion

 angle preservation; circles are mapped to circles

Non-disk domains

Cutting

Parameterization of closed genus-0 triangle meshes

Non-Constrained Planar

Spherical

Why parameterization?

- Allows us to do many things in 2D and then map those actions onto the 3D surface
- It is often easier to operate in the 2D domain
- Mesh parameterization allows to use some notions from continuous surface theory

Remeshing

- Particular remeshing type according to application

Remeshing examples

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

Density function in parameter space

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

- Importance map created according to application needs

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

- Importance map is sampled by points - as in halftoning

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

- Importance map is sampled by points - as in halftoning (error diffusion process)

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

- Sampled points are triangulated using Delaunay
- Using the parameterization, the 2D points are lifted back into 3D

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

- More results

Interactive geometry remeshing

[Alliez et al., SIGGRAPH 2002]

- More results

Computing parameterizations

Convex mapping (Tutte, Floater)

- Works for meshes equivalent to a disk
- First, we map the boundary to a convex polygon
- Then we find the inner vertices positions

$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}$ - inner vertices; $\quad \mathbf{v}_{\mathrm{n}}, \mathbf{v}_{\mathrm{n}+1}, \ldots, \mathbf{v}_{\mathrm{N}}$ - boundary vertices

Inner vertices

- We constrain each inner vertex to be a weighted average of its neighbors:

$$
\begin{gathered}
\mathbf{v}_{i}=\sum_{j \in \mathrm{~N}(i)} \lambda_{i, j} \mathbf{v}_{j}, \quad i=1,2, \ldots, \mathrm{n} \\
\lambda_{i, j}=\left\{\begin{array}{cc}
0 & i, j \text { are not neighbors } \\
>0 & (i, j) \in E \text { (neighbours) } \\
\sum_{j \in N(i)} \lambda_{i, j}=1
\end{array}\right.
\end{gathered}
$$

Linear system of equations

$$
\begin{aligned}
& \mathbf{v}_{i}-\sum_{j \in \mathrm{~N}(i)} \lambda_{i, j} \mathbf{v}_{j}=0, \\
& \mathbf{v}_{i}-\sum_{j \in \mathrm{~N}(i) \backslash \mathrm{B}} \lambda_{i, j} \mathbf{v}_{j}=\sum_{k \in \mathrm{~N}(i) \cap \mathrm{B}} \lambda_{i, k} \mathbf{v}_{k}, \quad i=1,2, \ldots, \mathrm{n} \\
& \left(\begin{array}{lllll}
1 & & -\lambda_{1, j_{l}} & & -\lambda_{1, j_{d l}} \\
& 1 & & & \\
\\
& & 1 & & \\
& -\lambda_{4, j_{l}} & & \ddots & \\
& & -\lambda_{\mathrm{n}, j_{5}} & & 1
\end{array}\right)\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{\mathrm{n}}
\end{array}\right)
\end{aligned}
$$

Shape preserving weights

To compute $\lambda_{1}, \ldots, \lambda_{5}$, a local embedding of the patch is found:

1) $\left\|\mathbf{p}_{j}-\mathbf{p}\right\|=\left\|\mathbf{v}_{j}-\mathbf{v}\right\|$
2) $\operatorname{angle}\left(\mathbf{p}_{j}, \mathbf{p}, \mathbf{p}_{j+1}\right)=\left(2 \pi / \Sigma \theta_{j}\right) \operatorname{angle}\left(\mathbf{v}_{j}, \mathbf{v}, \mathbf{v}_{j+1}\right)$

$$
\exists \lambda_{i},\left\{\begin{array}{l}
\mathbf{p}=\Sigma \lambda_{i} \mathbf{p}_{i} \\
\lambda_{i}>0 \\
\Sigma \lambda_{i}=1
\end{array} \Rightarrow \text { use these } \lambda\right. \text { as edge weights. }
$$

Linear system of equations

- A unique solution always exists
- Important: the solution is legal (bijective). The proof is not trivial.
- The system is sparse, thus fast numerical solution is possible
- Numerical problems (because the vertices in the middle might get very dense...)

Conformal mapping

Also called harmonic

- Another way to find inner vertices
- Strives to preserve angles (conformal)
- We treat the mesh as a system of springs.
- Define spring energy:

$$
\mathrm{E}_{\text {harm }}=\frac{1}{2} \sum_{(i, j) \in \mathrm{E}} k_{i, j}\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}
$$

where \mathbf{v}_{i} are the flat position (remember that the boundary vertices $\mathbf{v}_{n}, \mathbf{v}_{n+1}, \ldots, \mathbf{v}_{N}$ are constrained).

Energy minimization - least squares

- We want to find flat positions that minimize the energy.
- Solve the linear least squares problem!

$$
\begin{aligned}
& \mathbf{v}_{i}=\left(x_{i}, y_{i}\right) \\
& \mathrm{E}_{\text {harm }}\left(x_{l}, \ldots, x_{n}, y_{l}, \ldots, y_{n}\right)=\frac{1}{2} \sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{E}} k_{i, j}\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2}= \\
& =\frac{1}{2} \sum_{(i, j \in \mathrm{E}} k_{i, j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right) .
\end{aligned}
$$

$E_{\text {harm }}$ is function of 2 n variables

The spring constants $k_{i, j}$

- The weights $k_{i, j}$ are chosen to minimize angle distortion:

$$
k_{i, j}=\cot \alpha+\cot \beta
$$

- The matrix of the normal equations is the cotan Laplacian (without area weighting)

Discussion

- The results of harmonic mapping are better than those of convex mapping (local area and angles preservation).
- But: the mapping is not always legal (the weights can be negative for badly-shaped triangles...)

Discussion

- Both mappings have the problem of fixed boundary it constrains the minimization and causes distortion.
- More advanced methods do not require boundary conditions (see references on the website).

