
CS 523: Computer Graphics, Spring 2011

Shape Modeling

Digital Geometry Processing
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Topics

� Smoothing

� Simplification

� Parameterization

� Remeshing
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Mesh Smoothing

Curve smoothing

Taubin smoothing

Implicit fairing

Laplacian mesh optimization

2/22/2011Andrew Nealen, Rutgers, 2011



( ) ( )iii-ii xxxxx −+−=∆ +11
2

1

2

1

xx K−=∆

Laplacian smoothing
2D Curve

� Discrete Laplacian for a single vertex

� In matrix-vector form for the whole curve 
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Smoothing

� Gaussian filtering

� Scale factor  0 < λ < 1

� Matrix-vector form  x′′′′ = x – λ Kx

� Works identical for surface smoothing

� Choose (normalized) Laplacian weights

� Drawbacks

� Causes the curve/mesh to shrink

iii λ xxx ∆+=′
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Original curve

Laplacian smoothing 
2D Curve – Example
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1st iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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2nd iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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8th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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27th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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50th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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500th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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1000th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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5000th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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10000th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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50000th iteration; λ=0.5

Laplacian smoothing 
2D Curve – Example
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Surface smoothing

� Normalized Laplacian weights

vj

vi

α
β
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Surface smoothing

� Matrix-vector notation for L(x) = Lx

vi

vj

α
β

L is the n x n

Laplacian Matrix
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Taubin smoothing

� Idea: perform inflation

after shrinking step

� Pick a

� Iterate the following two 
steps

� Simple to implement

� Requires many iterations

� Need to tweak µ and λ

10 

iterations

50 

iterations

original

200 

iterations
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Implicit fairing

� Model smoothing as a diffusion process

� Scale λ by simulation parameter time t

� Backward Euler for unconditional stability
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� Use cotangent instead of uniform Laplacian

Implicit fairing
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Laplacian mesh optimization
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Laplacian mesh optimization

� Mesh smoothing L = Lcot (outer fairness) or L = Luni (outer 

and inner fairness) 

� Controlled by WP and WL (Intensity, Features)

� Least squares solve using 

normal equations

=L x 0
WL WL

pWP WP

ATA x = bAT

(ATA)-1x = bAT
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Using WP
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Using WP and WL

2/22/2011Andrew Nealen, Rutgers, 2011



Mesh Simplification

Level of detail (LOD)

Hausdorff distance

Mesh optimization

Error quadrics
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� Polygon simplification and level of detail (LOD) 

reduce geometric complexity of (small) objects

RuntimeRuntime
Select LOD based on screen sizeSelect LOD based on screen size

PreprocessPreprocess
Compute Levels Compute Levels of Detail (LOD)of Detail (LOD)

Progessive representations
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Simplification
Criteria

� Usually based on visual error

� Difficult to quantify

� Often used

� Geometric distance between original und simplified 

object

� Volume between original and simplified object

� Difference between surface normals between original 

and simplified object

� Combination of multiple criteria
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Simplification
Criteria

� Why geometric distance?

� Fails for occluded/foreshortened parts of the 

mesh
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� Hausdorff distance (distance between point sets):

U

d(u,v)

do(U,V)

u

V

d(u,V)

Vdo(V,U)

Approximation criteria
Geometric distance

u,v∈Rd : d(u,v)= u−v

u∈Rd,V⊂Rd :d(u,V)= inf
v∈V

d(u,v)
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Approximation criteria
Geometric distance

W

V

do(W,V)
do(V,W)

� Hausdorff distance

� Generally bad for 

orientation or shape 

comparison

� Very good metric for 

comparing original to 

simplified model

� Topolocial 

correspondence 

improves results W
V

d
2

d1
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Mesh optimization
Local operations

� Three local operations

[Hoppe 1993]

� Edge Collapse

� Edge Split

� Edge Swap/Flip

� Minimize some global energy
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Mesh optimization 
Results
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Simplification
Edge collapse
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Simplification
Evaluating the operations

� For edge collapse selection, the approximation 
error must be evaluated

� Possibilities:

� Hausdorff distance (expensive)

� One-sided Hausdorff distance

� Accumulate squared distances to planes (Error 
quadrics)

� Basic operation: edge collapse
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Simplification
Error quadrics

� Compute squared distance to planes

� Example: planar polygons
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Simplification
Error quadrics

� [Garland/Heckbert 97]: 

propagate error quadric by addition

Q1

collapse

Q
2

Q3 Q1+Q2

Q
2

Q3

Q1+Q2

Q
2

Q
1

Q
3
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Qk

Simplification
Error quadrics

� Triangle meshes
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Simplification
Error quadrics

� Special cases

� Face Flips: in collapsing 
the blue edge, the 
normal of the green 
face has flipped

� These cases must be 
detected and avoided

� OpenMesh takes care 
of this for you

� OpenMesh has error 
quadrics implemented
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Simplification
Error quadrics

� Advantages

� Simple error computation

� Very fast

� Geometric interpretation 

� Good approximation of the original

� Can collapse vertices that are not connected 
via edges
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Simplification
Error quadrics

� Disadvantages

� One sided distance only (from new to original)

� Loss of symmetry
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Simplification
Algorithm

� Operation and error metric define algorithm

� Compute error for every atomic simplification 

operation

� Create a priority queue based on the error

� While the queue is non-empty

� Perform first simplification operation and remove from queue

� Recompute the error for neighboring operations and update 

the priority queue accordingly
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Simplification 
Mesh Saliency [Lee et al. 2005]

� Take salient features into account when 

simplifying the mesh
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Parameterization and Remeshing
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Surface parameterization

3D space (x,y,z)
2D parameter domain (u,v)

boundary

boundary
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Texture mapping
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Texture mapping

Image from Vallet and Levy, techreport INRIA2/22/2011Andrew Nealen, Rutgers, 2011



Mesh parameterization
Requirements

� Bijective (1-1 and onto): No triangles fold over.

� Minimal “distortion”

� Preserve 3D angles

� Preserve 3D distances

� Preserve 3D areas

� No “stretch”
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Distortion minimization

Kent et al ‘92 Floater 97 Sander et al ‘01

Texture map
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Sensitivity to mesh quality

Good 

parameterization algorithm

Not so good 

parameterization algorithm2/22/2011Andrew Nealen, Rutgers, 2011



Area distortion vs. angle distortion
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Texture map

Tutte Shape-preserving Conformal

Conformal parameterization
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Conformal parameteriztion
angle preservation; circles are mapped to circles
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Non-disk domains
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Cutting
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Non-Constrained Planar Spherical
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Parameterization of closed genus-0 
triangle meshes



Why parameterization?

� Allows us to do many things in 2D and then 

map those actions onto the 3D surface

� It is often easier to operate in the 2D domain

� Mesh parameterization allows to use some 

notions from continuous surface theory
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Remeshing
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Remeshing

� Particular remeshing type according to 

application

original uniform adapted semi-regular
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Remeshing examples
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Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

Density function in parameter space

Measure curvatureModel Flatten it 

conformally
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� Importance map created according to application needs

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

Importance map

filtering

Area stretch

filtering

Curvatures
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Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

� Importance map is sampled by points – as in halftoning
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Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

� Importance map is sampled by points – as in halftoning (error 

diffusion process)
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� Sampled points are triangulated using 

Delaunay

� Using the parameterization, the 2D points are 

lifted back into 3D

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]

2/22/2011Andrew Nealen, Rutgers, 2011



� More results

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]
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� More results

Interactive geometry remeshing
[Alliez et al., SIGGRAPH 2002]
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Computing parameterizations
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Convex mapping (Tutte, Floater)

� Works for meshes equivalent to a disk

� First, we map the boundary to a convex polygon

� Then we find the inner vertices positions

v1, v2, …, vn – inner vertices;     vn, vn+1, …, vN – boundary vertices 
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Inner vertices

� We constrain each inner vertex to be a 

weighted average of its neighbors:
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Linear system of equations
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Shape preserving weights

To compute λ1, …, λ5, a local embedding of the patch is found:

1) || pj – p || = || vj – v ||

2) angle(pj , p, pj+1) = (2π /Σθj ) angle(vj , v, vj+1)

p4
p3

p5

p1

p
p2

2D3D

p = Σ λi pi

λi > 0

Σ λi  = 1

⇒ use these λ as edge weights.∃ λi ,

v3 v2

v1v4 v5

v θ1
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Linear system of equations

� A unique solution always exists

� Important: the solution is legal (bijective). The 

proof is not trivial.

� The system is sparse, thus fast numerical 

solution is possible

� Numerical problems (because the vertices in 

the middle might get very dense…)
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Conformal mapping
Also called harmonic

� Another way to find inner vertices

� Strives to preserve angles (conformal)

� We treat the mesh as a system of springs.

� Define spring energy:

where vi are the flat position (remember that the boundary

vertices vn, vn+1, …, v� are constrained).
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Energy minimization – least squares

� We want to find flat positions that minimize 

the energy.

� Solve the linear least squares problem! 
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The spring constants ki,j

� The weights ki,j are chosen to minimize angle 

distortion:

ki,j = cot α + cot β

� The matrix of the normal equations is the 

cotan Laplacian (without area weighting)

α β

i

j
3D
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Discussion

� The results of harmonic mapping are better than those of 

convex mapping (local area and angles preservation).

� But: the mapping is not always legal (the weights can be 

negative for badly-shaped triangles…)
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Discussion

� Both mappings have the problem of fixed boundary –

it constrains the minimization and causes distortion.

� More advanced methods do not require boundary conditions 

(see references on the website).

ABF++ method,

Sheffer et al.
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