CS 523: Computer Graphics, Spring 2011 Shape Modeling

Shape deformation intro Surface vs. space deformations

Why shape deformation?

Animation

Editing

Simulation

Parametric curves and surfaces

Deformation by control point manipulation

- Some online demos
- http://www.cs.princeton.edu/ ~min/cs426/jar/bezier.html
- http://www.nbb.cornell.edu/ neurobio/land/OldStudentProjects/ cs490-96to97/anson/BezierPatchApplet/

U

http://wwwvis.informatik.unistuttgart.de/~kraus/ LiveGraphics3D/cagd/

Mesh/shape deformation

Basic idea

- Naïve method: dragging single vertices
 - One by one, or Rigid/affine (linear) transformation of vertex groups
- Smarter:
 - Create a small set of control parameters (reminder: *face* spaces)
 - Introduce a small set of deformation handles
 - Makes deformation editing easier
 - Introduces a trade-off between degrees of freedom and simplicity of the deformation task

Mesh/shape deformation

Commonly used paradigms

- Surface based deformation
 - Laplacian surface editing and other surface-based energy minimization approaches
 - Physically motivated: Laplacian preservation ≈ bending resistance

Space deformation

- Deforms some 2D/3D space using a cage
- Deformation propagation to all points in the space
- Independent of shape representation

Surface-based deformations Examples

 Region of interest (ROI) + affine deformation handle with variable boundary continuity

 Intuitive sketchbased deformation interfaces

Surface-based deformations Examples

Multi-resolution mesh editing

Surface-based deformations

Linear methods

6

- (2D) As rigid as possible shape manipulation
- Triangle gradient methods
- Laplacian surface editing

Surface-based deformations

Nonlinear methods

As rigid as possible surface modeling initial guess 1 iteration 2 iterations PriMo Mesh Puppetry

Early seminal work in computer graphics

Global and local deformation of solids [Barr 1984]

Early seminal work in computer graphics

- Free form deformations [Sederberg and Parry 1986]
 - Uses trivariate tensor product polynomial basis

Can be designed to be volume preserving

 $\mathbf{F}(x,y,z) = (F(x,y,z), G(x,y,z), H(x,y,z))$

then the Jacobian is the determinant

	∂F	<u> </u>	∂F
Jac(F) =	∂z	дy	∂z
	∂G	∂G	∂G
	∂z	дy	∂z
	<u> </u>	<u> </u>	<u> </u>
	∂x	дy	ðz

Andrew Nealen, Rutgers, 2011

Basic idea

- Design a set of coordinates for all points in Rⁿ w.r.t. the cage vertices
 - Each point x can be represented as a weighted and normalized sum of cage points
 - The coordinates are smoothly varying and guarantee continuity inside the volume

Examples

Mean value coordinates for closed tri meshes

Andrew Nealen, Rutgers, 2011

Examples

Harmonic coordinates

Andrew Nealen, Rutgers, 2011

Examples

