
CS 523: Computer Graphics, Spring 2011

Shape Modeling

Differential Geometry Primer 

Smooth Definitions

Discrete Theory in a Nutshell
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Motivation

� Geometry processing:

understand geometric 

characteristics, e.g.

� smoothness
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� smoothness



Motivation

� Geometry processing:

understand geometric 

characteristics, e.g.

� smoothness� smoothness

� how shapes deform

Andrew Nealen, Rutgers, 2011 2/15/2011 3



Curves
smooth definition
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� Curves are 1-dimensional parameterizations

p: R → R
d
,   d = 1, 2, 3, …

t → p(t)

t=0

t=0.5

Curves
smooth definition

� Planar curve: p(t) = (x(t), y(t))

� Space curve: p(t) = (x(t), y(t), z(t))
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t=0.5

t=0.75

t=1
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Parametric Curves 
Examples

� Circle in 2D

p(t) = (r⋅cos(t), r⋅sin(t))

t ∈ [0, 2π)

� Bézier curve

Andrew Nealen, Rutgers, 2011 2/15/2011

Basis functionsCurve and control polygon
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Curves
arc length parameterization

� Equal pace of the parameter 

along the curve

� len (p(t1), p(t2)) = |t1 – t2|
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Secant

� A line through two points on the curve.
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Secant

� A line through two points on the curve.
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Tangent

� The limiting secant as the two points come 

together.
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Secant and tangent
parametric form

� Secant: p(t) – p(s)

� Tangent: p′(t) = (x′(t), y′(t), …)

� If t is arc-length:

||p′(t)|| = 1||p′(t)|| = 1
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Tangent, normal, radius of curvature
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Circle of curvature

� Consider the circle passing through three 

points on the curve…
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Circle of curvature

� …the limiting circle as three points come 

together.
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Radius of curvature, r
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Radius of curvature, r = 1/κ

Curvature

r
1=κ
r

1/κ
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Signed curvature

� Sense of traversal along curve.
+κ

–κ
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Gauss map, n(p)

� Point on curve maps to point on unit circle.

)(ˆ pn
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Curvature = 

change in normal direction

� Absolute curvature (assuming arc length t)

)(ˆ tn′=κ

curve Gauss map curve Gauss map

� Parameter-free view: via the Gauss map
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Curvature normal
parametric form

� Assume t is arc-length parameter

)(ˆ)( tt np κ=′′

[Kobbelt and Schröder]

p(t)

)(ˆ tn

p′(t)
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Curvature normal
parametric form

� Note: if the parameter has constant speed, it 

only changes along the normal direction

� In other words,

p(t)

)(ˆ tn

p′(t)
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Turning number, k

� Number of orbits in Gaussian image.
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Turning number theorem

+2π

–2π
kds π=κ∫

Ω

2

� For a closed curve, 

the integral of curvature is 

an integer multiple of 2π.
+4π

0

Ω

2/15/2011 23Andrew Nealen, Rutgers, 2011



Discrete planar curves
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Discrete planar curves

� Piecewise linear curves

� Not smooth at vertices

� Can’t take derivatives

� Generalize notions from

the smooth world for

the discrete case!
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Tangents, normals

� For any point on the edge, the tangent is 

simply the unit vector along the edge and the 

normal is the perpendicular vector
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Tangents, normals

� For vertices, we have many options
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Tangents, normals

� Can choose to average the adjacent edge 

normals
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Tangents, normals

� Weight by edge lengths

21

e2e1

e2e1

v
ˆeˆe

ˆeˆe
ˆ

nn

nn
n

⋅+⋅

⋅+⋅
=

21 e2e1
ˆeˆe nn ⋅+⋅

1e
2e

2/15/2011 29Andrew Nealen, Rutgers, 2011



Inscribed polygon, p
connection between discrete and smooth

� Finite number of vertices

each lying on the curve,

connected by straight edges.
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The length of a discrete curve

� Sum of edge lengths
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� Sum of edge lengths

d3

d2

d1
p1

p2
p3

p4
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The length of a continuous curve

� Length of longest of all inscribed polygons.

)(lensup p)(lensup p
p
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The length of a continuous curve

� …or take limit over a refinement sequence

)(lenlim
0

p
h→

)(lenlim
0

p
h→

h = max edge length
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The length of a continuous curve

� In the continuous form:

dss
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The length of a continuous curve

� Compare:
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The length of a continuous curve

� When the parameter is arc-length:
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Curvature of a discrete curve

� Curvature is the change in normal direction as 

we travel along the curve

no change along each edge –

curvature is zero along edges
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Curvature of a discrete curve

� Curvature is the change in normal direction as 

we travel along the curve

normal changes at vertices –

record the turning angle!
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Curvature of a discrete curve

� Curvature is the change in normal direction as 

we travel along the curve

normal changes at vertices –

record the turning angle!
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Curvature of a discrete curve

� Curvature is the change in normal direction as 

we travel along the curve

same as the turning angle

between the edges
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Signed curvature of a discrete curve

� Zero along the edges

� Turning angle at the vertices

= the change in normal direction

α1, α2 > 0,   α3 < 0

α1 α2

α3
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Total signed curvature

� Sum of turning 

∑
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� Sum of turning 

angles α1 α2

α3
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Discrete Gauss Map

� Edges map to points, vertices map to arcs.
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Discrete Gauss Map

� Turning number well-defined for discrete 

curves.
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Discrete Turning Number Theorem

� For a closed curve, 

kαp
n

i

i π==∑
=

2)(tsc
1

� For a closed curve, 

the total signed curvature is 

an integer multiple of 2π.

� proof: sum of exterior angles
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Structure preservation

� Arbitrary discrete curve

� total signed curvature obeys

discrete turning number theorem

� even coarse mesh (curve)� even coarse mesh (curve)

� which continuous theorems to preserve?

� that depends on the application…
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Convergence

� Consider refinement sequence

� length of inscribed polygon approaches length of 
smooth curve 

� in general, discrete measure approaches 
continuous analoguecontinuous analogue

� which refinement sequence?

� depends on discrete operator

� pathological sequences may exist

� in what sense does the operator converge? 
(point-wise, L2; linear, quadratic)
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Curvature normal = length gradient

� Can use this to define discrete curvature!
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Curvature normal = length gradient
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Curvature normal = length gradient
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Curvature normal = length gradient
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Curvature normal = length gradient

+
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Curvature normal = length gradient
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Curvature normal = length gradient
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Recap

Convergence
Structure-

preservation

In the limit of a 

refinement sequence,

discrete measures of 

length and curvature 

agree with continuous 

measures.

For an arbitrary (even 

coarse) discrete curve, 

the discrete measure of 

curvature obeys the 

discrete turning number 

theorem.
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