CS 523: Computer Graphics, Spring 2011 Shape Modeling

Differential Geometry Primer
 Smooth Definitions

Discrete Theory in a Nutshell

Motivation

- Geometry processing: understand geometric characteristics, e.g.
- smoothness

Motivation

- Geometry processing: understand geometric characteristics, e.g.
- smoothness
- how shapes deform

$$
00
$$

Curves

smooth definition

- Curves are 1-dimensional parameterizations
$\mathbf{p}: \mathrm{R} \rightarrow \mathrm{R}^{d}, \quad d=1,2,3, \ldots$ $t \rightarrow \mathbf{p}(t)$

Parametric Curves

Examples

- Circle in 2D

$$
\begin{aligned}
& \mathbf{p}(t)=(r \cdot \cos (t), r \cdot \sin (t)) \\
& t \in[0,2 \pi)
\end{aligned}
$$

- Bézier curve

$$
\begin{aligned}
& \mathbf{p}(t)=\sum_{i=0}^{n} \mathbf{p}_{i} B_{i}^{n}(t) \\
& B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
\end{aligned}
$$

Curve and control polygon

Basis functions

Curves

arc length parameterization

- Equal pace of the parameter along the curve
- len $\left(\mathbf{p}\left(t_{1}\right), \mathbf{p}\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|$

Secant

- A line through two points on the curve.

Secant

- A line through two points on the curve.

Tangent

- The limiting secant as the two points come together.

Secant and tangent

parametric form

- Secant: $\mathbf{p}(t)-\mathbf{p}(s)$
- Tangent: $\mathbf{p}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), \ldots\right)$
- If t is arc-length:
$\left\|\mathbf{p}^{\prime}(t)\right\|=1$

Tangent, normal, radius of curvature

Circle of curvature

- Consider the circle passing through three points on the curve...

Circle of curvature

- ...the limiting circle as three points come together.

Radius of curvature, r

Radius of curvature, $r=1 / \kappa$

Curvature

$$
1<\frac{1}{1}
$$

Signed curvature

- Sense of traversal along curve.

Gauss map, $\hat{\mathbf{n}}(\mathbf{p})$

- Point on curve maps to point on unit circle.

Curvature $=$ change in normal direction

- Absolute curvature (assuming arc length t)

$$
\kappa=\left\|\hat{\mathbf{n}}^{\prime}(t)\right\|
$$

- Parameter-free view: via the Gauss map

curve

Gauss map

curve

Gauss map

Curvature normal parametric form

- Assume t is arc-length parameter

$$
\mathbf{p}^{\prime \prime}(t)=\kappa \hat{\mathbf{n}}(t)
$$

[Kobbelt and Schröder]

Curvature normal

parametric form

- Note: if the parameter has constant speed, it only changes along the normal direction
- In other words,

$$
\begin{aligned}
& \mathbf{p}^{\prime \prime}(t) \perp \mathbf{p}^{\prime}(t) \\
& \left\langle\mathbf{p}^{\prime}(t), \mathbf{p}^{\prime}(t)\right\rangle=1 \quad / \text { differentiate both sides } \\
& \left\langle\mathbf{p}^{\prime \prime}(t), \mathbf{p}^{\prime}(t)\right\rangle+\left\langle\mathbf{p}^{\prime}(t), \mathbf{p}^{\prime \prime}(t)\right\rangle=0 \\
& \left\langle\mathbf{p}^{\prime \prime}(t), \mathbf{p}^{\prime}(t)\right\rangle=0
\end{aligned}
$$

Turning number, k

- Number of orbits in Gaussian image.

Turning number theorem

- For a closed curve, the integral of curvature is an integer multiple of 2π.

Discrete planar curves

Discrete planar curves

- Piecewise linear curves
- Not smooth at vertices
- Can't take derivatives
- Generalize notions from the smooth world for the discrete case!

Tangents, normals

- For any point on the edge, the tangent is simply the unit vector along the edge and the normal is the perpendicular vector

Tangents, normals

- For vertices, we have many options

Tangents, normals

- Can choose to average the adjacent edge normals

$$
\hat{\mathbf{n}}_{\mathrm{v}}=\frac{\hat{\mathbf{n}}_{\mathrm{e}_{1}}+\hat{\mathbf{n}}_{\mathrm{e}_{2}}}{\left\|\hat{\mathbf{n}}_{\mathrm{e}_{1}}+\hat{\mathbf{n}}_{\mathrm{e}_{2}}\right\|}
$$

e_{2}

Tangents, normals

- Weight by edge lengths

$$
\hat{\mathbf{n}}_{v}=\frac{\left|e_{1}\right| \cdot \hat{\mathbf{n}}_{e_{1}}+\left|e_{2}\right| \cdot \hat{\mathbf{n}}_{e_{2}}}{\left\|\left|\mathrm{e}_{1}\right| \cdot \hat{\mathbf{n}}_{e_{1}}+\left|e_{2}\right| \cdot \hat{\mathbf{n}}_{e_{2}}\right\|} \uparrow \uparrow
$$

Inscribed polygon, p

connection between discrete and smooth

- Finite number of vertices each lying on the curve, connected by straight edges.

The length of a discrete curve

 $\operatorname{len}(p)=\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n+1}\left\|\mathbf{p}_{i+1}-\mathbf{p}_{i}\right\|$- Sum of edge lengths

The length of a continuous curve

- Length of longest of all inscribed polygons.

The length of a continuous curve

- ...or take limit over a refinement sequence

$$
\lim _{h \rightarrow 0} \operatorname{len}(p)
$$

The length of a continuous curve

- In the continuous form:
$\operatorname{len}=\int_{s=a}^{b}\left\|\mathbf{p}^{\prime}(s)\right\| d s$

The length of a continuous curve

- Compare:

The length of a continuous curve

- When the parameter is arc-length:
$\operatorname{len}=\int_{t=0}^{l}\left\|\mathbf{p}^{\prime}(t)\right\| d t=\int_{t=0}^{l} 1 d t=l$

Curvature of a discrete curve

- Curvature is the change in normal direction as we travel along the curve

Curvature of a discrete curve

- Curvature is the change in normal direction as we travel along the curve

Curvature of a discrete curve

- Curvature is the change in normal direction as we travel along the curve

Curvature of a discrete curve

- Curvature is the change in normal direction as we travel along the curve

Signed curvature of a discrete curve

- Zero along the edges
- Turning angle at the vertices
$=$ the change in normal direction

$$
\underbrace{}_{a_{1}, \alpha_{2}>0, a_{3}<0}
$$

Total signed curvature

- Sum of turning angles

Discrete Gauss Map

- Edges map to points, vertices map to arcs.

Discrete Gauss Map

- Turning number well-defined for discrete curves.

Discrete Turning Number Theorem

$$
\operatorname{tsc}(p)=\sum_{i=1}^{n} \alpha_{i}=2 \pi k
$$

- For a closed curve, the total signed curvature is an integer multiple of 2π.
- proof: sum of exterior angles

Structure preservation

- Arbitrary discrete curve
- total signed curvature obeys discrete turning number theorem
- even coarse mesh (curve)
- which continuous theorems to preserve?
- that depends on the application...

Convergence

- Consider refinement sequence
- length of inscribed polygon approaches length of smooth curve
- in general, discrete measure approaches continuous analogue
- which refinement sequence?
- depends on discrete operator
- pathological sequences may exist
- in what sense does the operator converge?
(point-wise, L_{2}; linear, quadratic)

Curvature normal = length gradient

- Can use this to define discrete curvature!

Curvature normal = length gradient

Recap

Structurepreservation

For an arbitrary (even coarse) discrete curve, the discrete measure of curvature obeys the discrete turning number theorem.

Convergence

In the limit of a refinement sequence, discrete measures of length and curvature agree with continuous measures.

