
CS 672: Spring 2010

Game Programming

and Design
Images:Images:Images:Images:

Game programming patterns

MVC for games

2/18/2009 1Andrew Nealen, Rutgers, 2010

Images:Images:Images:Images:
Chaim Gingold / Chris Hecker
www.slackworks.com/~cog

Game Programming Patterns
Sources

� Game Programming Patterns taken/adapted

from

� Zachary Booth Simpson

http://www.mine-
control.com/zack/patterns/gamepatte
rns.html

� Inspired by Design Patterns [Gamma et al. 1994]

http://www.dofactory.com/Patterns/
Patterns.aspx

2/18/2009 2Andrew Nealen, Rutgers, 2010

Model View Controller (MVC)
MVC Architecture

� Model: The domain-specific representation of
the information on which the application
operates. Data is to be encapsulated by the
Model.

� View: Renders the model into a form suitable � View: Renders the model into a form suitable
for interaction

� Controller: Processes
and responds to
events, typically user
actions, may invoke
changes on the model.

http://en.wikipedia.org/wiki/

Model-view-controller

2/18/2009 3Andrew Nealen, Rutgers, 2010

Model View Controller (MVC)
A Typical Case

� The user interacts with the user interface in some way (e.g.,
user presses a button)

� A controller handles the input event from the user interface,
often via a registered handler or callback

� The controller accesses the model, possibly � The controller accesses the model, possibly
updating it in a way
appropriate to the user's
action

� A view uses the model to
generate an appropriate
user interface

� Repeat...

http://en.wikipedia.org/wiki/

Model-view-controller

2/18/2009 4Andrew Nealen, Rutgers, 2010

Model View Controller (MVC)
Another View

http://java.sun.com/

2/18/2009 5Andrew Nealen, Rutgers, 2010

Main (Game) Loop

� How to Implement MVC in a real-time setting?

� Solution: Mini Kernel
void updateWorld() {

for(int i=0; i<numTanks; i++)
{

class BaseController {

virtual void update() = 0;

}

class MissileController : {

if(tanks[i])

{
updateTankPhys(tanks[i]);
updateTankAI(tanks[i]);

}

}

for(i=0; i<numSoldiers; i++)
{

... etc ...

}

class MissileController :
BaseController {

Model &missle, ⌖

virtual void update(){
missile.pos += missile.vel;
missile.vel += (target.pos –
missile.pos).norm() * missAcc;

}

}

void miniKernelDoAllControllers(){
foreach controller in list {
controller.update();

}

}
2/18/2009 6Andrew Nealen, Rutgers, 2010

Main (Game) Loop

C++ Example

bool CGameEngine::RunFrame(GameTime gameTime) {

GetInput();

if (gameTime->HasTickPassed()) { // for each frame

// move stuff

Notifies controllers via callbacksNotifies controllers via callbacksNotifies controllers via callbacksNotifies controllers via callbacks

Run each controller in the minikernelRun each controller in the minikernelRun each controller in the minikernelRun each controller in the minikernel// move stuff

miniKernel->RunProcesses(gameTime);

colManager->resolveCollisions(); // resolve collisions

}

// update camera

camera->Update();

// render stuff

renderer->RenderScene();

}

Run each controller in the minikernelRun each controller in the minikernelRun each controller in the minikernelRun each controller in the minikernel

Draw the ModelDraw the ModelDraw the ModelDraw the Model

2/18/2009 7Andrew Nealen, Rutgers, 2010

Model (1)
Model

� Also Known As. Database Records, World Items, Item Database

� Intent. Store the state of an object which exists in the game world.

� Motivation. Each object tracks its state as the game progresses. Game
rules define the transition of these states (Controller pattern).

� Examples of state information that a model might track:

� hitPoints, name, type, position, orientation, size, status

� Examples of methods that a model might implement:

� die(), getHit(), updateAnim(), insertIntoWorldDatabase(), moveTo()

� Implementation. Many Model implementations are polymorphic.

� Example: CModel extends a CBaseModel class.

� Many models can share a single rendering representation, see Type Database

2/18/2009 8Andrew Nealen, Rutgers, 2010

Model (2)
Model Database

� Also Known As. World Database, World, Level

� Intent. Aggregate the Model objects into one database.

� Motivation. Collecting the models into one list simplifies several
important systems.

� The inter-object references and the "death problem". (See Controller.) � The inter-object references and the "death problem". (See Controller.)

� Some games may have more than one kind of Model Database simultaneously
(i.e. TerrainModelDatabase, ObjectModelDatabase)

� Implementation. Some games may implement the Model Database as a
simple array of Model instance pointers. Other games may choose to
implement sophisticated memory management or caching solutions

� The world database is often indexed to increase search speeds.

2/18/2009 9Andrew Nealen, Rutgers, 2010

Model (3)
Type Database

� Intent. Store information which is common to Model types.

� Motivation. There is often a great deal of common information
concerning types of objects. To avoid duplication, and to simplify editing,
these are separated into a database.

� Implementation. A Type Database is conceptually static data associated
with a model sub-class.

� Prototype state; e.g. max hit points, strength, range, cost, etc.

� Artwork; e.g. meshes, texture-map, sprites.

� Appearance maps. (See Appearance Map)

� Example: a Model can access a Type within the Type Database for its
rendering representation

2/18/2009 10Andrew Nealen, Rutgers, 2010

View (1)
View

� Also Known As. Renderer, Painter, Viewer, Interface

� Intent. Render the visible Models given a point of view (POV)

� Motivation. Renderers are often the most custom part of any game; they
often define the game's technology.

� Implementation. The View reads the Model Database via a Spatial Index� Implementation. The View reads the Model Database via a Spatial Index
but does not modify either. Thus, typically:
� Model and Model Database are read-only by View.

� View is invisible to Model and Model Database.

� Many View implementations translate a Model "state" into an
"appearance"
� Example: a Model "orc1" is de-referenced and is found to be type==ORC_TYPE

and frame==10. The View then finds an artwork pointer via type/frame and
draws.

2/18/2009 11Andrew Nealen, Rutgers, 2010

View (2)
Render Delegation

� Also Known As. Overloaded draw

� Intent. Pass-off special render cases to Model code.

� Motivation. Generic View code often becomes clotted with special cases.
Render Delegation moves special cases from View into Model code.

� Implementation. An example clot in View code:
if (typeToDraw==DARTH_VADERS_SHIP)
drawSpecialShieldEffect();drawSpecialShieldEffect();

� To encapsulate these kinds of special cases, the View delegates the draw back
to the Model. For example: objectToDraw->draw(x,y)

� The View may choose to delegate only in certain special cases, often based on
type data. For example:

if (getType(type)->delegateDraw) object->draw(x,y);
else drawSprite(getType(type)->sprite[frame], x, y);

� One major drawback of Render Delegation is that the Model code must
include all of the render interface, which may be substantial.

2/18/2009 12Andrew Nealen, Rutgers, 2010

View (3)
Appearance Map

� Also Known As. State to Appearance Translation, Frame Mapping

� Intent. Isolate Model state from Model appearance to minimize impact on
controllers when art changes.

� Motivation. It is common for Controllers to change the appearance of the Model,
especially in animation controllers. Since art may change frequently it makes sense
to separate the state from the appearance.

� Implementation. Without an appearance map, a controller is likely to change the
"frame" of an animation directly. For example:"frame" of an animation directly. For example:

if (state == WALKING) {
model.frame = WALK_START_FRAME +
WALK_NUM_FRAMES * (WALK_DURATION / dt) ;

}
In this case, if the animation is changed, the three constants WALK_XXX need to be
updated and the game recompiled for the change to take effect.

� An appearance map eliminates these constants and replaces them with a lookup.

� Typically, a table is loaded at game initialize time which encodes the translation
from state and delta time ("state") to frame ("appearance").

2/18/2009 13Andrew Nealen, Rutgers, 2010

Controller (1)
Controller

� Also Known As. Process, Mini-process

� Intent. Update a Model's state based on circumstance

� Motivation. Controllers implement the rules of a game.

� They determine how objects behave given a circumstance, and isolate these
rules from the objects (Models) themselves.

� Implementation. Controllers relate to Models and Views as follows:

� Models are read-writeable by Controllers.

� Controllers are created and destroyed by Models, but are otherwise invisible.

� Controllers are notified by the View (i.e. GetInput())

� Controllers are often associated with only one Model instance.

� For example: animation, AI, pathfinding. In these cases the controller instance is
usually created and destroyed synchronously with the associated model.

2/18/2009 14Andrew Nealen, Rutgers, 2010

Controller (2)
Controller

� Some Controllers inherently have more than one associated Model.
� Example: multi-body physics, target tracking (heat seeking missiles, etc).

These controllers often maintain Model references which must be notified
/ garbage collected when the referenced object dies.

� Controllers are often implemented as "processes" (See Mini-kernel)
but may also be implemented as "hard wired updates" in the main
loop, especially for large multi-model controllers like physics.

� Some simple Controllers are stateless. � Some simple Controllers are stateless.
� For example, a homing missile controller may just compute the direction

to the target and apply force as necessary. Most controllers, however, are
state-aware.

� Controllers should be aware of their per frame time budget

� State-aware Controllers often become significantly complicated with
large switch statements.

2/18/2009 15Andrew Nealen, Rutgers, 2010

Controller (3)
Controller State Machine

� Intent. Track a complicated state process with a Controller.

� Motivation. Controllers = complicated state machines, incl. state transitions in
response to events. Animation is the canonical example.

� Implementation. A Controller subclass with list of all state variables.
� Example: an animation might have: currectFrame, currentAnim, lastFrameTime, etc. The

process of the controller contains a switch on some primary state.

void Animation::doProcess() { void Animation::doProcess() {
switch(animState) {
case RUNNING_STARTING:
case RUNNING:
case RUNNING_STOPPING: ...

� Each state updates and checks for transition conditions.
� Example: RUNNING may check to see if it is at the end of the cycle, if so, restart it.

� Some states need double buffering (i.e. physics simulations)

� State machines can become very complicated and difficult to maintain using this
technique.

2/18/2009 16Andrew Nealen, Rutgers, 2010

Controller (4)
Controller State Machine

� A possible solution to „switch/case“
� Use a State base class, and overide the Controller
Update(..) method depending on state of controller
void CSphereController::Update(GameTime gameTime) {

state->Update(gameTime);
}}

� State must check for state transition at the end of
Update(...)
void CIntersectedState::Update(GameTime gameTime) {

....
if (thisModel->isNotIntersected()) {

controller->state = new NonIntersectedState()
}

2/18/2009 17Andrew Nealen, Rutgers, 2010

Model View Controller
Subset of a possible prototype

MiniKernel

runProcesses()

RunFrame()

RunProcesses()

List controllers
GetInput()

Collisions()

Controllers

Collisions()

Render()

List models

ModelDB

Controller

Update()

Model

Model Data n

1

Draw()

List types

TypeDB

Type Data

Main (Game) Loop

2/18/2009 18Andrew Nealen, Rutgers, 2010

Code Example

� My prototype implementation of Game Design
Patterns (C++ code)
http://gamedev.nealen.net/intern/docs/gamearch.zip

� Step through the code� Step through the code

� Start at
void CGameEngine::Init();

bool CGameEngine::RunFrame();

� Move to View
void CModel::Draw();

2/18/2009 19Andrew Nealen, Rutgers, 2010

Rest of Today

� Game Prototype #4

� Next week: last prototype... After that, form
teamsteams

� 2-4 people, probably 3-4 teams

2/18/2009 20Andrew Nealen, Rutgers, 2010

