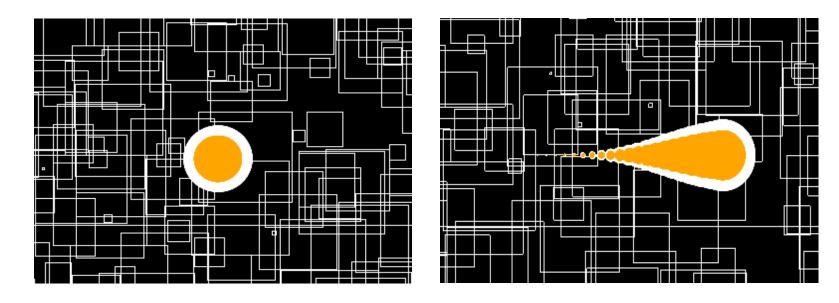


CS 672: Spring 2010

Game Programming and Design

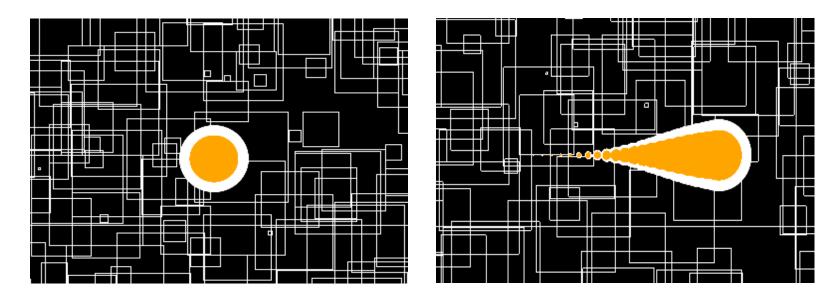
© Steve Swink


Game feel Principles of virtual sensation Controller mappings

Game Feel

Steve Swink, *Principles of Virtual Sensation*

Game Feel Experiment


Demo

- Any (small) difference(s) in control + physics ?
- Which version is more fun to control?

Game Feel Experiment

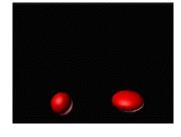
Results

- Result: no differences in control + physics ...
- What changed ?
 - Maybe helpful / eye candy: motion trail
 - Eye candy / obfuscating: dynamic background

Game Feel

General

- Sensation of
 - Kinesthetic feeling (e.g. Super Mario)
 - Controlling some virtual avatar (direct / indirect)
 - Making the character an extension of your will
- Principles of virtual sensation / Game Feel
 - Based on gamasutra essays/papers by Steve Swink http://www.steveswink.com/
- Deeply embedded in Human-Computer-Interaction (HCI) research



Principles of Animation

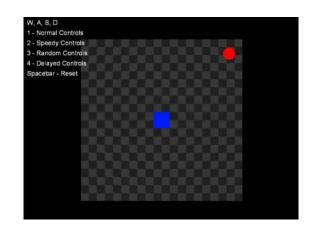
Thomas & Johnston: The Illusion of Life

- Squash and Stretch
- Timing
 - spacing actions to define the weight and size of objects
- Anticipation
 - the preparation for an action
- Staging
 - presenting an idea so that it is unmistakably clear
- Follow Through & Overlapping Action
 - the termination of an action and establishing its relationship to the next action
- Straight Ahead Action & Pose-To-Pose Action
- Slow In and Out
- Arcs
- Exaggeration
 - Accentuating the essence of an idea via the design and the action
- Secondary Action
- Appeal

Game Feel

Towards a More Formal Definition

- We often use physical analogies
 - The game feels: floaty, smooth, slow, loose
 - Best/Worst Game/Control/Camera ever
- How to delineate animation and virtual sensation?

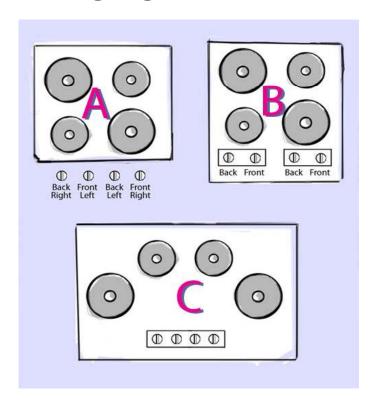


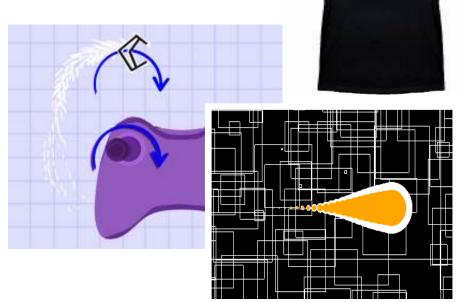
- 1. Predictable Results (Input + Response)
 - Allowing a sense of mastery and control by correctly and consistently interpreting player input
- 2. Novelty
 - There are an infinite number of results from the same input
- 3. Good Feedback
 - Enabling mastery, control, and learning by rewarding player experimentation
- 4. Low Skill Floor, High Skill Ceiling
 - Making the mechanic intuitive but deep; it takes minutes to pick up and understand but a lifetime to master

- 5. Context
 - Giving a mechanic meaning by providing the rules and spatial context in which it operates
- 6. Impact and Satisfying Resolution
 - Defining the weight and size of objects through their interaction with each other and the environment
- 7. Appealing Reaction
 - Producing appealing reaction regardless of context or input

1. Predictable Results (1)

- Design clear, simple and consistent player controls
- Pitfalls
 - Mapping inputs to results that are too difficult to process
 - Creating mappings that are unnatural or counterintuitive
 - Overwhelming the player with states and possibilities
- These pitfalls make consistent results seem random




1. Predictable Results (2)

Principles of Virtual Sensation

Use Natural Controller Mappings

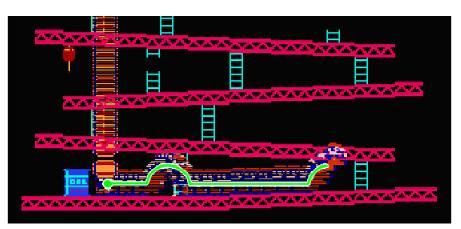
■ E.g. "genre conventions"

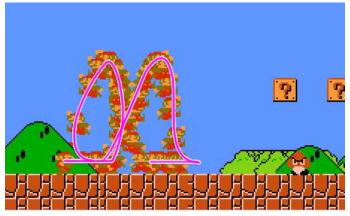
- Exceptions
 - Some experiments, Resident Evil 1-3, GTA IV

1. Predictable Results (3)

Principles of Virtual Sensation

Demo


- Clearly differentiate between player states
- What are player states ? Example:
 - Mario's controls on the ground as opposed to Mario's controls in the air



- (Discernable) state changes are important
 - Expressivity and improvisation + Increase reaction sensitivity
- Too many states may cause confusion
 - Feel of control is lost
 - Example: Tony Hawk Skateboarding series

1. Predictable Results (4)

- Expressivity and improv with digital (!) input
 - Compare Donkey Kong to Super Mario Bros.

- SMB achieves analog feel through simple (Euler) time integration (see XNASandbox)
 - But be careful: chosing timesteps and spring stiffness
- One more example: Precision (a Cactus game)

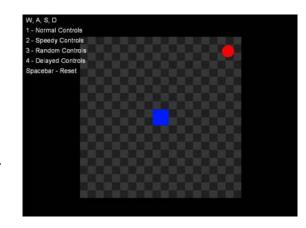
1. Predictable Results (5)

- Consider direct vs. indirect input methods,
 or a combination thereof
- Some examples
 - Ico: Great sense of emotional ties
 - Lost Winds: Control player indirectly via control of air flow

1. Predictable Results (6)

- We have very little time to hook the player
 - If they don't feel successful and oriented within the first couple minutes, we've lost them
- The lowest order feedback loop is the virtual sensation
 - The moment-to-moment control
 - If it doesn't feel good at an intuitive level they'll stop playing
- Virtual sensation + predictable results are the gatekeepers to all other game experiences

2. Novelty


- Infinite number of results from the same input
- Examples
 - Improve character abilities over time (Metroid, Mega Man, etc.)
 - Deterministic physical simulations
 - Interesting player states and combinations thereof
- Demo: Ski Stunt Simulator

Demo

3. Good Feedback (1)

- Enable mastery, control and learning by rewarding experimentation
- Allow player to
 - Understand the structure and challenges of the game
 - Give immediate, clear and useful (Audiovisual) feedback
- Without immediate feedback there is no virtual sensation

3. Good Feedback (2)

- Clearly communicate the game state to the player
- Example: Mario Kart
 - Powerslide: Smoke + Sound
 - Powerslide boost: Blue / Red Sparks



- Giving detailed audiovisual feedback results in consistent and measurable progress
 - Do not leave the player guessing and frustrated

4. Low Skill Floor, High Ceiling (1)

Principles of Virtual Sensation

- Low skill floor = a virtual sensation is easy to learn
- This is not a function of complexity
 - A relatively complicated input scheme may be easy to learn thanks to
 - A natural mapping
 - Predicable results
 - Avoiding state overwhelm
 - Providing good audiovisual feedback

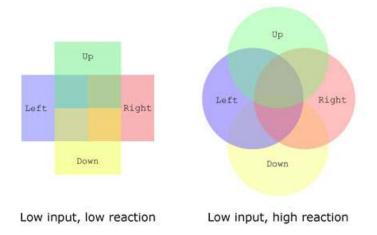
■ Conversely, the opposite is also true ⊗

4. Low Skill Floor, High Ceiling (2)

- If controls are too complex to learn fast, use Helpers / Assists
- No longer physical, but rather physically plausible
- Examples
 - Jugglers (arc prediction and force attenuation)
 - Aim assist in 3D shooters on consoles
 - Grav Ball (simple ball pass control)
 - Forza Motorsport (oversteer control)
- Why overcomplicate the control scheme?
 - Let players do what they can, computer does rest

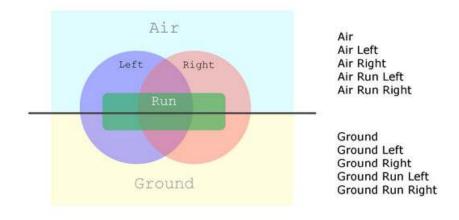
4. Low Skill Floor, High Ceiling (3)

- High skill ceiling = mastering a virtual sensation is time consuming
- What is mastering a virtual sensation ?
 - Try competing in Counterstrike or Ikaruga and you will know what I mean ©
 - Both games are easy to get into, but take forever (literally) to master
- Design mastery as learning a layer of skills
 - Start with skill atoms, and combine them later

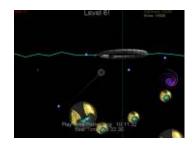

4. Low Skill Floor, High Ceiling (4)

Principles of Virtual Sensation

Try tuning the relation between input and

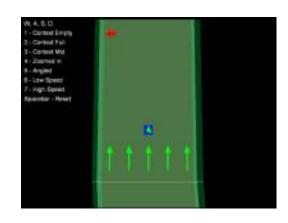

reaction sensitivity

- Low Input, low reaction
- Low Input, high reaction
- High Input, low reaction
- High Input, High reaction



4. Low Skill Floor, High Ceiling (5)

- State switching
- Mario has Left, Right, Jump, Run
 - State switching creates many overlapping states



- Holding jump button longer results in higher jump
- Height of Jump also influenced by speed
- Other examples of state switching
 - Combos, Spatial states (demo)

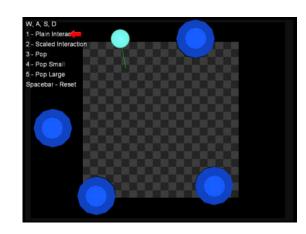
5. Context (1)

- Give a mechanic meaning by providing rules and spatial context
- Examples
 - Mario in empty space ? Boring ...
 - Turning a car on an infinite field? Boring ...
- Demo
 - Empty vs. Full vs. Med
 - Perception
 - Zoom vs. Angled speed perception
 - Textured vs. Empty speed perception

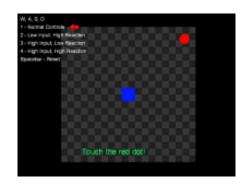
5. Context (2)

- Make use of player perception
- Provide a sense of scale and weight
 - Example: Shadow of the Colossus
 - Great use of speed (slow), sound (heavy) and visuals (particles, dust, size, style, etc.)

5. Context (3)


- Context and gameplay aesthetics
- Example: Super Mario Kart vs. Mario Kart 64
 - Love SMK. Do not like MK64. Not challenging at all
 - Many love MK64: "fun to play with friends"
 - Think about your aesthetics early on !

6. Impact


- Define weight and size of objects through interaction with each other + environment
- Allow player to
 - Extrapolate the physical laws of the virtual world
 - Make good, educated guesses
- Bad interaction modeling breaks immersion (flow)
 - Do this too often and the player will stop playing
- Adapt rendering style to physical style
 - Fake / Exaggerate them both ☺
 (+ use particles)

7. Appeal

- Produce appealing reaction regardless of context or input
 - Remember the demo in the beginning ?
 - Think about failure states
 - Ski Stunt Simulator crashes are fun, even if the goal were unclear
 - Demo of cube movement
 - High input, high reaction is clearly the most fun in the absence of context

The Bottom Line

- Goal
 - Create a feeling of control and mastery
 - So powerful that it transcends context and platform and becomes a powerful tool for self expression
- Create a sense of ownership
 - Personal (time) investment
 - Replayability and evangelism
 - Mastery and resulting ability to improvise
- Adhere to these principles and you are more likely to succeed

Further Reading

- Principles of Virtual Sensation http://www.gamasutra.com/features/20061114/ swink_01.shtml
- Game Feel: The Secret Ingredient
 http://www.gamasutra.com/view/feature/2322/
 game_feel_the_secret_ingredient.php?print=1
- The Chemistry of Game Design
 http://www.gamasutra.com/view/feature/1524/
 the_chemistry_of_game_design.php?print=1
- Ron's Rules for Playtesting http://2dboy.com/2007/11/12/ rons-rules-for-playtesting/