
postmortem

John Asmuth and Timothy Gerstner and Brian Poppy
 Engine, AI, Sound Lead, Art Graphics, Levels
 code code code

4/29/2010

Overview

Cursed is a 2D fantasy RPG in which a druid and his familiar do their best to survive in a hostile world
populated by demons, antagonist druids and the perils of his own mysterious past. The hero himself is unable

to defend himself beyond casting a simple wood spell to block the path of his enemies, and must rely on the

powerful, yet finicky, familiar for protection.

The player must fight his way through a dead world, drained of its energy during some cataclysmic event

immediately prior to the game. Over the course of his travels, he is able to piece together events from the

past and eventually discover the cause of this disaster, as well as its remedy.

Technology

Cursed was developed with Visual Studio 2008 using XNA as its general framework and Box2D as

its physics engine. Source control was managed through the parallel use of Dropbox and Git. The artwork

was drawn first on a Wacom Intuos 3 tablet and then edited with Gimp. Audio samples were played

first on an Alhambra classical guitar using an Edirol USB Audio interface and Audacity, and edited

with Adobe Audition. Color schemes were derived using http://colorschemedesigner.com as a

starting point. Pidgin/AIM, Google Wave and IRC were used to facilitate communication. Google

Code was used as an issue tracker.

Technology used for content that did not make it into the final game includes Maya 7 for 3D models, and

Noteabilty Pro for music composition and generation.

Things that went right

1 The final art style
was the result of a lengthy progression,

beginning with (from left to right) the pro-

totypical “circles of various colors” art

(1), to a isometric-view and hand-drawn

feral sprite (2), to a demonic and danger-

ous looking beast drawn entirely on com-

puter (3), followed by a simpler (and

quicker to draw) sketch on top of a pre-

rendered model (4), and eventually finalized with a bird’s eye (and easy to rotate) marshmallow ghost(5).

1
2

3
4 5

http://colorschemedesigner.com
http://colorschemedesigner.com

The tile art went through a similar progres-

sion, beginning with “squares of various

colors” (not pictured), and transitioning to

the very detailed and high frequency hand-

drawn line art (left), followed by a slightly

not-as-high frequency isometric tile set

(center), to the very low frequency and

two-toned bird’s eye view tiles (right).

The final art style is very consistent and

low frequency, allowing the player to relax and be comfortable as the druid uncovered more of the world.

As important to the final look of the game as the

art is the color post-processing step. When all the

artwork was drawn in full color (using various

color masks on top of the original grayscale im-

ages), the color saturation was overwhelming.

Mitigating this is the fact that a much smaller por-

tion of the screen was drawn in color, indicating

areas to which the druid’s familiar was more at-

tracted. Coloring only part of the screen helped to

both focus the player’s attention and avoid the

dreaded Willy-Wonka look.

2 Source control, using the com-
bination of Git and Dropbox, proved an effective

way to share and archive code. Using Git allowed

the developers to work on different aspects of

the game independently, and merge with each

other’s branches as desired. There was no single

“master” copy - only the three copies owned by

each of the developers. The entirety of the re-

pository and working code was kept in Dropbox and shared, allowing the making the request to “run my

code” common, as it could happen without interrupting any work or taking more time than required to

double-click the relevant executable.

3 The method of narration
was an unplanned strong point for the game. Having

glimpses of the story appear as text on the ground,

written in the third person, gave the game a storybook

feel and provided motivation to explore and find new

memories. This style is very similar to childrens’ pic-

ture books, where the narration and artwork are often

mixed.

4 Communication was not a problem.
The primary method of communication was Instant Messenger, combined with an ability to instantly (via

Dropbox) examine another developer’s code or demo, speeding up bug diagnosis and resolution. The ease of

using direct communication to quickly fix bugs and solve other problems caused the issue tracker to fall out

of use early in development.

5 Level editing could have been a
disaster, except for the in-game level editor. By

pressing a key, any developer could quickly drop

into editor mode and paint new levels in very little

time. The appearance of game objects was speci-

fied by the use of “presets”, or string identifiers to

linked to visuals defined elsewhere. Using presets, a

level could created using one art style could be

quickly converted to a new one with a minimum of

effort and hassle.

Things that went wrong

1 Scoping proved to be a challenge to the inexperienced. Giddy with enthusiasm and the over-
extrapolating the success-to-effort ratio observed in the prototyping phase of the course, the cursed devel-

opers (who also happened to be the “Cursed” developers) were more ambitious than abilities and the time

frame allowed. Achieving the desired gameplay took longer than anticipated, leaving not enough time for

level design and story.

2 The constantly changing art styles provided a challenge to level de-
sign and detracted from the output of the team artist in other equally important parts of the project, like

making sure the engine programmer focused on enabling good gameplay more than maintaining pretty code

structure, and generally keeping the game on track. Although the final art style was successful, it came late

in the project’s lifetime.

3 Roll-your-own physics engines can be fun to work on, but are extremely
time consuming and not germane to the primary focus of the course: game design (as opposed to game de-

velopment). The physics and collision engine used in the beginning suffered initial efficiency issues, delaying

other aspects of development. Even when the engine speed was brought to manageable levels (using quad-

tree body indexing), the limits of the engine programmer’s physics knowledge were reached when many dif-

ferent bodies pushed into a corner, causing them to jitter confusingly and often pop through walls entirely.

Although the transition to Box2D happened quickly (basic functionality over the course of one day), the

franken-code base never quite recovered from the shock and remains littered with a mix of two-and-one-half

different geometry libraries and many subroutines that are not done in quite the right way for Box2D.

4 Choosing XNA had some benefits, but also some severe disadvantages. One of the devel-
opers had access only to a single desktop machine with Windows, causing him to be chained to his apart-

ment for much of the semester. Beyond the obvious cabin-fever issues is the fact that when this machine

kicked the bucket (almost literally - a coolant reservoir developed a leak, shorting out some components on

the motherboard), the developer in question lost most of his ability to contribute in serious ways to the pro-

ject.

Writing code optimized for C# and XNA also proved challenging - minimizing allocations turns out to be key

(Box2D has a special XNA version beyond the C# version that minimizes allocations). Much of the early en-

gine work was spent optimizing in this way.

XNA was chosen as the target platform in part because of the theoretical ease of introducing “cool new

graphics stuff”. The only significant aspect that was made potentially easier is the color post-processor. The

rest of the visuals were vanilla sprite placement and alpha-blending.

The combination of a language that compiles on both Windows and Mac OS X, such as Java or C++, and

OpenGL would have provided more flexibility. The option was weighed, and the ease of getting things work-

ing quickly with XNA, the lack of experience with C++ for two of the three team members, and the difficulty

of developing a multi-platform Java/OpenGL application outweighed the benefits.

5 Indoor levels proved to be an outstanding failure in playtesting sessions during class. The
tight corridors and nature of combat in “Cursed” made indoor, obstacle-heavy levels frustrating and dis-

tinctly not-fun. Fortunately the class and instructor stepped in to correct this error early on, but time was

wasted.

Conclusion

Clearly, the development of Cursed was a learning experience. Three important lessons were learned.
First, focus on what is important. As discussed earlier, game engine design and game design are two differ-

ent things. Second, focus on what is possible. Simply knowing what is possible is impossible without prior

experience. Third, the importance of testing cannot be overstated, even though every effort was made.

These lessons, and others described earlier, are important for any sort of project, especially when software

is involved.

